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function  must have its zero on the line .    Since  has 
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Introduction 

In his 1859 Zeta paper, Riemann obtained a formula for the count of 

the primes up to a given number. Riemann’s formula has four terms. 

But only the first and the third terms have non-negligible values. The 

first is the dominant term, and can be computed precisely. The third is 

smaller and depends on the provision that all the zeros of the Zeta 

function in  are on the line  .   0 x< < 1 1 / 2x =

This provision became known as the Riemann Hypothesis, but it was 

never hypothesized by Riemann, nor was it used by him.  Not seeing an 

easy proof for it, Riemann used only the first term of his formula and 

obtained an approximation far superior to Gauss for the count of the 

primes.   

In 1935, and 1936, Titchmarsh and Comrie [Hasel, p. xii] confirmed by 

computations that the first 1042 zeros of Zeta in  with  0 1x< <

0 Im 1468z< <  

lie exactly on the line .  Following that, Touring (1953) 

extended the upper limit to , and Lehmer (1956) 

1 / 2x =

Im 1540z =

confirmed that the first 25,000 zeros of Zeta in 0 1 with  x< <

0 Im 21,944z< <  

lie on the line . 1 / 2x =

By 2002, the first 50 billion Zeta zeros have been located on the line 

, and in a 2008 meeting a far greater number was mentioned. 1 / 2x =

The fact that the first 50 billion zeros are on , does not 

constitute a proof for the infinitely many zeros in the infinite area of 

the strip . 

1 / 2x =

0 1x< <
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But expecting massive endless computations to disprove the Riemann 

Hypothesis by finding a zero off the line , is statistically 

implausible.   

1 / 2x =

In fact, statistical tests indicate that the Riemann Hypothesis holds 

with extremely high statistical certainty.  In 2008, we applied a Chi-

Squared Goodness-of-Fit-Test to the Riemann formula for the count of 

the primes, and confirmed that the Riemann Hypothesis holds with 

certainty that is limited only by the software [Dan2].   

In sections 1 to 4, we present Riemann’s function , and known facts ( )zξ

about its zeros. In section 5, we recall that ( ) (x iy x iyξ ξ− = + )

1

1

1

.  

This fact serves as a key result for the proof. 

In 8.2, we present a  key result that follows from the Weierstrass 

factorization of , and in 9.1 a key result due to Hadamard.   ( )zξ

The last key result due to Titchmarsh, is presented in section 10. 

There, we prove that in , any factor of   must have its 0 x< < ( )zξ

zero on the line .   1 / 2x =

Since  has in 0  the same zeros as , this proves that all ( )zξ x< < ( )zζ

the zeros of  in 0 , are on  . ( )zζ x< < 1 / 2x =

 

1. , and  have the same  zeros in  ( )zξ ( )zζ 0 1x< <

For x i ,  Riemann gave the y z+ = ∈ Definition         

1.1                              
1

2

1
2

1
2

1
( ) ( ) ( )( 1)

z
z z zz zξ ζ

π
≡ Γ−

1

 

 

Since  has no zeros in , [Saks], we have the ( )zΓ 0 x< < Proposition
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1.2                      ( )zξ   has  in   the same zeros as  0 x< < 1

1

1

( )zζ

 

 

2.   has in , infinitely many zeros that are 

sequenced by size and increase to ∞ . 

( )zξ 0 x< <

Since  has infinitely many zeros in  [Titch], we have the ( )zζ 0 x< <

Proposition

2.1     has infinitely many zeros   in . ( )zξ 1 2 3, , ,...z z z 0 1x< <

Also,  is an entire function, not identically zero. Thus, by [Saks, p. 

296] we have the 

( )zξ

Proposition

2.2    The zeros , are sequenced by size, and increase to  . 1 2 3, , ,...z z z ∞

1 2 3 ...z z z≤ ≤ ≤ ↑ ∞ . 

 

 

3.  the multiplicity of each zero of   is finite ( )zξ

Since an analytic function that vanishes on a converging sequence is 

identically zero, there is no infinite sequence of identical  zeros. 

That is, we have the 

( )zξ

Proposition

3.1       The multiplicity of each zero of   is finite. ( )zξ

 

 

4.  Diagonally symmetric zeros of  ( )zξ
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For , Riemann derived the functional equation  . 

Therefore, we have the 

( )zζ ( ) (1 )z zξ ξ= −

Proposition

4.1 If     is a zero of  , then so is  1 1 . n nz x iy= + n niy( )zξ n nz x− = − −

 

These two zeros are diagonally symmetric with respect to 1
2

z = , 

because denoting 1
2nx α= + n , we have 1

2
1 n nx α− = − . 

 

5.    Observing   ( ) (x iy x iyξ ξ− = + ) , for  , 0 1x< <

Proof:      Riemann obtained an integral formula for , ( )zξ

( )1 1
2 2
( 1) 11

2
1

( ( 1) () )
t

z z

t

z z t t tz dψξ
=∞

− + −

=

= + − +∫ t , 

where  the infinite series  
2 22 3

1 1 1
( ) .....

t t t
t

e e eπ π π
ψ ≡ + + + , 

converges uniformly for .   Therefore,    1t ≥

( )1 1
2 2
( 1) 11

2
1

( ) ( 1) ( )
t

z z

t

z z z t t tξ ψ
=∞

− + −

=

= + − +∫ dt  

           ( )1 1
2 2
( 1) 11

2
1

( 1) ( )
t

z z

t

z z t t t dtψ
=∞

− + −

=

= + − +∫  

                           ( ) ( )z zξ ξ= = . 

That is, we have  
( ) ( )x iy x iyξ ξ− = + .  
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6.  A convergent infinite product is zero if and only if 

at least one of its factors is zero    

Analytic functions are effectively represented as infinite products 

[Saks, VII].    

By the definition in [Saks, p. 286],  

The Infinite Product  converges to  if and only if there is an 

index , so that all the terms after it  are non 
1 2 3...a a a p

0n 0 0 01 2 3, , ,...n n na a a+ + +

-zero, and  

0 0 01 2... 0n n n ma a a q+ + + → ≠ . 

Consequently,   

01 2... np a a a= q . 

 

Therefore, [Saks, p. 287], has the Proposition

6.1      The value of a convergent infinite product is equal to zero if and 

only if at least one of its factors is zero. 

 

The product of 11n n
a = −  that has no such q , diverges to zero, 

although it satisfies the convergence necessary condition  [Saks, 

p. 287]. 

1na →

 

If a convergent infinite product equals zero, this is due to only finitely 

many vanishing factors, without which, the remaining infinite product 

is non-zero. 
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7. Absolutely Convergent Infinite Product 

We’ll need Absolute Convergence, so that the infinite products will 

converge independently of the order of their factors. 

By the definition in [Saks, p. 288],  

1 2(1 )(1 )...u u+ + converges absolutely ⇔ 1 2(1 )(1 )...u u+ + converges. 

Since 

1 2(1 )(1 )...u u+ +  converges if and only if converges, 1 2 ...u u+ +

we have in [Saks, p. 289] the Proposition

7.1 converges absolutely ⇔  1 2(1 )(1 )...u u+ + 1 2 ...u u+ + converges. 

 

Consequently, since the value of an absolutely convergence series does 

not depend on the order of the summation, we have Proposition  

7.2  The value of an absolutely convergent infinite product does not     

           depend on the order of its factors. 

 

 

8.  The Weierstrass Factorization of  ( )zξ
By 2.2, the zeros of   in ,  ( )zξ 0 1x< <

1 2 3, , ,...z z z , 

are sequenced by size, and increase to ∞ .  

1 2 3 ...z z z≤ ≤ ≤ ↑ ∞ . 

Since  is an analytic function in the complex plane so that  ( )zξ

(0) 0ξ ≠ , 

 8
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and since the  are sequenced by their size and  increase  to ∞ ,  'nz s

Then, by Weierstrass [Saks,VII, 2.13],  we have 

( )( )

1

( ) 1( ) nQ zh z

n n

z
e e

z
zξ

∞

=

= −∏ , 

where  

  the polynomials  guarantee the uniform convergence of 

the  product in the open plane,  and   

( )nQ z

   is analytic in the complex plane. ( )h z

 

The zeros 1  of 4.1 appear in the factorization, and we have nz−

Proposition

8.1                    ( )( )

1

( ) 1 1
1

( )( ) nQ zh z

n n n

z z
z e e

zz
ξ

∞

=

= − −
−∏ . 

 

 

While the 1 ’s appear in the factorization,  nz− 1 2 3, , ....z z z . DO NOT. 

We stress this crucial point with Proposition

8.2  1 2 3, , ....z z z  do not appear in the Weierstrass 

Factorization of  . ( )zξ

Proof:  The appearance of the zero 1z  of 5, will require the inclusion of 

the  factor 
1

1
z
z

− , that vanishes whenever 1z z= .   

 9
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It is well known that the function 

( )g z z= , 

is not differentiable with respect to z . 

Therefore, the factor 
1

1
z
z

−  is not differentiable with respect to z . 

Consequently, multiplying by 
1

1
z
z

−  will produce a function that is 

not differentiable with respect to z .  

In particular, including any of the factors 

1

1
z
z

− , 
2

1
z
z

− , 
3

1
z
z

− ,… 

in the factorization will make  not differentiable. ( )zξ

But since  is an analytic function in the complex plane, it is 

differentiable of any order, at any point z  in the complex plane. 

( )zξ

A similar argument prevents the appearance of any of the factors 

1

1
1
z
z

−
−

, 
2

1
1
z
z

−
−

, 
3

1
1
z
z

−
−

,….  

 

9.  The Hadamard factorization of  ( )zξ

Hadamard showed that for , we have ( )zξ

( ) 1nQ ze = , 
                                          and 

1( )
2

h ze = . 

Thus, simplifying the Weierstrass product representation of . ( )zξ

 10
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Hadamard factorization for  is the 3( )zξ rd key result for the 

Hypothesis proof.   This is Proposition

9.1           
1 1 2

1
2

( ) 1 1 1 1
1 1

...
z z z z

z
zz z

ξ
⎛ ⎞ ⎛⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= − − − − ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝
⎜

⎠
⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜− −⎝ ⎠ ⎝ ⎠ 2z

⎞
,  

where the product converges absolutely, and uniformly with respect to 

the , its value does not depend on the order of its  factors, and  it 

vanishes only at the zeros of  . 

'z s

( )zξ

The conjugate roots, 1 1 2 2 3 3,1 , ,1 , ,1 ,....z z z z z z− − − do not appear in 

the factorization of .   ( )zξ

 

A proof of this established result, is in the Appendix.  We note that the  

nz ’s  do not appear in the factorization of , by 8.2, ( )zξ

 

10.  1
2nx = ,  for any zero    nz

Proof:  To keep it readable, we’ll take , and assume that  has 

multiplicity 2 .    Say, , and 

7n = 7z

7z z= 8 6 7 8z z z z< = < 9

7

 

Since   is a zero of ,  7 7z x iy= + ξ

7 7( )x iyξ + = 0 . 
By 5, 

7 7( )x iyξ − = 0

0

. 
Thus, 

7 7( )x iyξ − = . 

Applying  9.1  to ,  7 7( )x iyξ −

 11
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7 7 7 7 7 7 7 7

1 1 2 2

0 1 1 1 1
1 1

x iy x iy x iy x iy

z zz z

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟= − − − −⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟
− −

⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜− −⎝ ⎠⎝ ⎠⎝ ⎠

− −

⎝ ⎠
...

8

 

Since we assumed , we have 7z z=

7 7 7 7 7 7 7 7

1 1 6 6

0 1 1 ... 1 1
1 1

x iy x iy x iy

z

x

zz

iy

z

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟= − − − − ×⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜− −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

− − − −  

                 7 7 7 7 7 7 7 7

7 9

2 2

7 9

1 1 1 1
1 1

...
x iy x iy x iy x iy

z zz z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎟ ⎟ ⎟− ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟× − − − −⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

− − −
⎟⎟⎟

z

 

Clearly, for , the factors with  are all non-zero.  7,8m ≠ 7mz ≠

Indeed,  

7
7

71 0
m

m

i

z
z

x y
− = ⇒

−
z= , contradicting  8.2. 

And, 

7
7 7

71
1 0 1 m m

m

z x iy
x i

z
z

y
z− = ⇒ − = − ⇒

−
= −

−
71

z

, contradicting 8.2. 

Since all the factors with  are non-zero, by 6.1, we must have 7mz ≠

( ) ( )7 7 7 7

7 7

2 2

1
1 1

x iy x iy

z z

− −

−
− − 0= . 

Thus, 

7 7 7 7

7 7

2 2

1
1 1

x iy x iy

z z

− −

−
− − 0= .    

Hence, 
2 2

7 7
2 2

7 7 7 7

4 1 2
0

1

y x

x iy x iy

−
=

+ − −
.    

That is, 
22

77
2 2 2 2
7 7 7 7

1 24
0

(1 )

xy

x y x y

−
=

+ − +
 

 12
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Now, the three terms that include  are non-vanishing. 2
7y

To see that, note the 4th key result for the Hypothesis Proof, due to 

Titchmarsh, [Titch, p.329-332],  

 in , and ,  has only one zero on the line 

, at ,  

0 1x< < 10 y y≤ ≤ ( )zζ

1 / 2x = 1 14.134725132y =

Thus,  must be out of the Titchmarsh rectangle.  7y

That is, , and any one of the terms with  is greater than 

. 

7y y≥ 1
2
7y

2
1 196y >

Therefore, we have  

71 2 0x− = . 
That is,  

1
7 2
x = . 

Replacing 7  with n , and 2  with k , we conclude that if  is a zero of nz

multiplicity , then we’ll apply the arguments above to obtain that k

1
2nx = .  

 

Discussion 

The proof ties together key results due to Riemann, Weierstrass, 

Hadamard, and Titchmarsh. 

Each of these results is crucial to the proof:  

Hadamard Factorization, 9.1,  lists all the zeros of zeta, and enables us 

to deal with them all. 

Riemann’s result, 5, applied to Hadamard’s factorization yields an 

infinite product with mainly non-zero factors. 

 13



Gauge Institute Journal, Volume 6, No 3, August 2010                          H. Vic Dannon  

Weierstrass result 8.2, enables us to toss away the non-zero factors, 

and focus on the few that vanish. 

Titchmarsh result in 10, allows us to eliminate the rest of the non-zero 

terms, and conclude that all the zeros are on the line 1
2

x = . 

The crucial role of these components of the proof, suggests that this 

may be the only path to a comprehensible, direct proof. 
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APPENDIX: Proof of Hadamard Factorization 9.1 

A.   ( ) 1nQ ze =

To establish  , we aim to show that for all z  in 0 1, ( ) 1nQ ze = x< <

1

(1 )
1 1 1

1 (n n n n n nz z
z z z

z z

∞

=

⎛ ⎞⎛ ⎞ ⎛ −⎟ ⎟⎜ ⎜ ⎜− − = −⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎜ ⎜ ⎜⎟ ⎟− −⎝ ⎠⎝ ⎠ ⎝∏ ∏ 1 )
z ⎞⎟⎟⎟⎟⎠

 converges 

absolutely.  

By 7.1, we need to show that  
1
(1 )m m mz z−∑  converges. 

For instance, ( )( )22
2 1

1

cos( ) 1 z
n

n

zπ
∞

−
=

= −∏   converges absolutely, 

because 

2
1

(2 1)
1
n

n

∞

−
=
∑  converges. 

Note that, 

22 21 1
2 4

(1 ) ( )m m mz zz − = − −  

                  
221 1

2 4
( )m mx iy= − + −  

                  
22 21 1

2 2
( ) 2 ( )m m m mx y i x y= − − + − − 1

4
 

                  ( )22 2 21 1 1
2 4 2

( ) 4( )m m mx y x= − − − + − 2
my  

4 4 2 2 21 1 1 1 1
2 16 2 2 2 2

( ) ( ) 2( )m m m m mx y x y x= − + + − − + + − 21
my  

                  ( )22 2 21 1 1 1
2 16 2 2

( ) ( )m m mx y x= − + + − − + 21
2 m
y  

 15
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4 2 21 1 1 1 1
2 16 2 2 2

( )m mz x= − + − − + my  

Now, 2 21 1 1 1
16 2 2 2

( )m mx y− − + > 0 , because 1
2mx − ≤ 1

2
, and by a 

result of  Titchmarsh (that we state in section 10), .   1 14my y≥ >

Therefore,   
21
2

(1 )m m mzzz − > − . 

Hence,  

21
2

1 1
(1 )m m

mz
zz

<
− −

, 

and it is sufficient to show that  
21
2

1

m N
mz>

< ∞
−

∑ . 

Note that the necessary condition,  
21
2

1
0

mz
↓

−
, holds,  

since . mz ↑ ∞

To show the convergence, for m  large enough,   

, 1, 2,m N N N= + + ... , 

define positive numbers   so that 1mR >

 , log 1mR >
                                   and  

4 logm mm R R= . 
Then, 

log log mm R> . 

Hadamard showed [Dan3, 10.3], that the number of zeros of   in ( )zξ

1
2 mz − ≤ R   is bounded by 2 l . ogm mR R

 16
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Since we took  ,  we have 4 logmm R R= m

1
2m mz R− > . 

Therefore, 

                     
2 21
2

1 1

m N m N mm
Rz> >

≤
−

∑ ∑  

                                               2 2
2

1
4 (log m
m N

R
m>

= ∑ )  

                                               
( )22

2

log
4
m N

m

m>

≤ ∑  

                                               
( )22

3/2 1/2

log1
4
m N

m

m m>

= ∑ . 

Since 
( )2

1/2

log
0

m

m
→ ,  as m , we have → ∞

( )2
1/2

log
1

m

m
< , for m N , >

and 

21
2

1

m N
mz> −

< ∞∑ . 

Therefore, 

1

1 1
1n n n

z z
zz

∞

=

⎛ ⎞⎛⎟⎜ ⎜− −⎟⎜ ⎜⎟⎜ ⎜⎟ −⎝ ⎠⎝∏
⎞⎟⎟⎟⎟⎠
 converges absolutely, 

and 
( ) 1nQ ze = . 

Since the Weierstrass product converges uniformly, we have 

 17
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( )

1

( ) 1 1
1

( )(h z

n n n

z z
e

zz
zξ

∞

=

= − −
−∏ ), 

where the infinite product converges absolutely, and uniformly with 

respect to the .  'z s

 

B.  The order of an entire function  

By [Holl, p. 68], the Hadamard Factorization Theorem applies to an 

entire  function ( )f z  for which 

1
log logmalim x ( )

log
sup

R z R
f z

R→∞ =
≡ < ∞ . 

 is called the order of ( )f z . 

For instance, if  ( ) cos( )f z zπ= , 

              1
2

cos( ) i z i zz e eπ ππ −= +  

                               ( )1
2

i z i ze eπ π−≤ +  

                               ( )( ) ( )1
2

i x iy i x iye eπ π+ − += +  

                               ( )1
2

y ye eπ π−= +  

                                yeπ≤

                               zeπ≤ . 
Thus, 

        
1 1
log logmax cos( ) log logmax

log logz R z R

zz
R R

eππ
= =

≤  

 18
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1
log log

log
R

R
eπ=  

                                                        
1
log( )

log
R

R
π=  

                                                        
1
(log log )

log
R

R
π= +  

                                                         
log

1
logR

π
= +  

                                                         ,  as . 1→ R → ∞

Hence,  ( ) cos( )f z π= z  has order . 1=

 

C.  1( )
2

h ze = . 

Hadamard showed that for , ( )zξ 1( )
2

h ze = . 

Hadamard replaced Weierstrass entire function 

( )h z , 
with a polynomial 

( )Q z , 
so that 

deg ( )Q z ≤ . 

It is well-known ([Ed] or [Dan3, 10.2]), that if R  is large enough, 

log ( ) logz Rξ ≤ R   in 1
2

2z − ≤ R .    Hence, 

( )
1
2

1 1
log log max ( ) log log

log logRz
z R

R R
ξ

=−
≤ R  

                                    
log log

1
log

R
R

= + . 
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Since by L'Hospital 
1 1
log
1

log log
0

lo
lim lim

gR R
R

R RR
R→∞ →∞

= = , 

we conclude 

1
2

1
lim sup log log max ( ) 1.

log z RR
z

R
ξ

=→∞ −
=  

That is, 
( )zξ  is of order . 1=

Hence, 
deg ( ) 1Q z ≤ . 

That is 
1
2

( ) ( )Q z A B z= + − , 

for some constants A , and B . 

Since the factorization factors are  

21 1
2 4
21 1

2 4

( )(1 )
1 1 1 1

1 (1 ) ( )
( )( )

n n n nn

zz z z z
z zz z z

− −−
− −

−
− −

− − −
= = , 

we have, 

 
1
2

2 1
( ) 4

21 1
2 4

1
2( ) 1 ,

( )

( )A B z

n n

z
z

e
z

ξ + −
⎛ ⎞⎟⎜ ⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎜ − −⎝ ⎠

− −
∏  

where the product is an even function of 1
2

z − .    

But Riemann showed [Dan3, 9.2] that 

21 4
0

1
21 2 2( ) ( )( ) ....z A A zAzξ − ++ − +=  

is an even function of 1
2

( )z − .   

Consequently, 
 , 0B =
and 
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1
2
21

2

1
42

1
4

( )

( )
( ) 1

n

A

n

e
z

z
z

ξ
⎛ ⎞⎟⎜ ⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

− −

− −
∏ . 

Setting , 0z =
(0)Ae ξ= . 

By Riemann’s Integral formula for , that we used in 5, ( )zξ

( )1 1
2 2
( 1) 11

2
1

( ( 1) () )
t

z z

t

z z t t tz dψξ
=∞

− + −

=

= + − +∫ t . 

Hence, we have 
1
2

(0)ξ = . 

Therefore, 
1
2
21

2

1
42

1
4

( )

( )

1
( ) 1

2 n n

z

z
zξ

⎛ ⎞⎟⎜ ⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

− −

− −
∏ . 

                 
1

1 1
2 1n n nz

z z
z

⎛ ⎞⎛⎟ ⎟⎜ ⎜= − −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟−⎝ ⎠⎝∏
⎞

⎠
 

where the infinite product converges absolutely, and uniformly with 

respect to the .   'z s
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