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Abstract   We show that Ito’s integral , 

where  is a Random Process, and  is Random 

Walk is ill defined because it 

( , ) ( , )
t b

t a

X t dB tζ ζ
=

=
∫

( , )X tζ ( , )B tζ

 violates Riemann’s Oscillation Condition for 

Integrability: The Oscillation Integral is not an 

infinitesimal.  

 violates the Fundamental Theorem of the Integral 

Calculus:  Reversing the integration returns a function 

different from the original integrand.  

 depends on the partitions of [ , , and on the choice of 

the intermediate points in them.  Thus, the Random 

Variable has an undetermined Expectation.  

]a b

Consequently, the Ito Integral does not exist, and formulas 

that include that integral do not hold. 
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Introduction 

In [Dan5],  we defined in Infinitesimal Calculus the Wiener 

Integral  ( ) ( , )
t b

t a

f t dB tζ
=

=
∫ , where ( )f t  is integrable hyper-real 

function, and  is a Random Walk. ( , )B tζ

In [Ito], Ito argued that ( )f t  can be replaced with a Hyper-

real Random Process  . ( , )X tζ

We argue here that his claim fails for  . ( , ) ( , )X t B tζ ζ=

We show that Ito’s approach through Lebesgue Integration, 

ignores the basics of Integration set by Riemann.  

The Ito integration sums do not converge to an Integral.  

The Ito integral  is ill defined because it ( , ) ( , )
t b

t a

B t dB tζ ζ
=

=
∫

 violates Riemann’s Oscillation Condition for 

Integrability: The Oscillation Integral is not an 

infinitesimal.  

 violates the Fundamental Theorem of the Integral 

Calculus:  Reversing the integration returns a function 

different from the original integrand.  
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 depends on the partitions of [ , , and on the choice of 

the intermediate points in them.  Thus, the Random 

Variable has an undetermined Expectation.  

]a b

Any integration is an infinite summation. Then, we cannot 

tell the difference between  

( , )[ ( , ) ( , )]
t b

t a

X t X t dt X tζ ζ ζ
=

=

+ −∑ , 

( , )[ ( , ) ( , )]
t b

t a

X t dt X t dt X tζ ζ
=

=

+ + −∑ ζ , 

and any summation in between them 

( , ) (1 ) ( , ) [ ( , ) ( , )]
t b

t a

X t X t dt X t dt X tλ ζ λ ζ ζ ζ
=

=

⎡ ⎤+ − + + −⎣ ⎦∑  

It is not up to us to choose the sum with 1
2

λ = , and it is 

meaningless to say that we did that. 

The infinite summation yields a definite value, only if all 

these –impossible to distinguish between- results, are all the 

same. 

Furthermore, when we encounter uncertain outcomes, our 

first measure of certainty is the average. The average is 

what we expect, give or take some deviation. 
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Thus, our first measure is the Expectation of the Random 

Variable, and our second measure is the Variance, which 

over time will limit the Expectation within a band. 

If we cannot tell the Average of our outcomes, our Random 

Variable is undefined, and should be discarded. 

Thus, a Random Process  may not be integrated with 

respect to a Random Walk , and an Integral in which 

( , )X tζ

( , )B tζ

( )f t  is replaced by  does not exist. ( , )X tζ
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1.  

Hyper-real Line 
The minimal domain and range, needed for the definition 

and analysis of a hyper-real function,  is the hyper-real line. 

Each real number α  can be represented by a Cauchy 

sequence of rational numbers,  so that .    1 2 3( , , ,...)r r r nr α→

The constant sequence (  is a constant hyper-real. , , ,...)α α α

In [Dan2] we established that,  

1. Any  totally ordered set of positive, monotonically 

decreasing to zero sequences  constitutes a 

family of infinitesimal hyper-reals.  

1 2 3( , , ,...)ι ι ι

2. The  infinitesimals are smaller than any real number, 

yet strictly greater than zero. 

3. Their reciprocals (
1 2 3

1 1 1, , ,...
ι ι ι ) are the infinite hyper-

reals. 

4. The infinite hyper-reals are greater than any real 

number, yet strictly smaller than infinity. 
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5.  The infinite hyper-reals with negative signs are 

smaller than any real number, yet strictly greater than 

. −∞

6. The sum of a real number with an infinitesimal is a 

   non-constant hyper-real. 

7. The Hyper-reals are the totality of constant hyper-

reals, a family of infinitesimals, a family of 

infinitesimals with negative sign, a family of infinite 

hyper-reals, a family of infinite hyper-reals with 

negative sign, and non-constant hyper-reals. 

8.  The hyper-reals are totally ordered, and aligned along 

a line: the Hyper-real Line. 

9. That line includes the real numbers separated by the 

non-constant hyper-reals. Each real number is the 

center of an interval of hyper-reals, that includes no 

other real number. 

10. In particular, zero is separated from any positive 

real by the infinitesimals, and from any negative real 

by the infinitesimals with negative signs, . dx−

11.  Zero is not an infinitesimal, because zero is not 

strictly greater than zero. 
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12. We do not add infinity to the hyper-real line. 

13. The infinitesimals, the infinitesimals with 

negative signs, the infinite hyper-reals, and the infinite 

hyper-reals with negative signs are semi-groups with 

     respect to addition. Neither set includes zero. 

14. The hyper-real line is embedded in , and is 

not homeomorphic to the real line. There is no bi-

continuous one-one mapping from the hyper-real onto 

the real line. 

∞

15. In particular, there are no points on the real line 

that can be assigned uniquely to the infinitesimal 

hyper-reals, or to the infinite hyper-reals, or to the non-

constant hyper-reals. 

16. No neighbourhood of a hyper-real is 

homeomorphic to an  ball.   Therefore, the hyper-

real line is not a manifold. 

n

17. The hyper-real line is totally ordered like a line, 

but it is not spanned by one element, and it is not one-

dimensional. 
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2. 

Hyper-real Function 

2.1  Definition of a hyper-real function 

( )f x  is  a hyper-real function, iff it is from the  hyper-reals 

into the hyper-reals. 

 

This means that any number in the domain, or in the range 

of a hyper-real ( )f x  is either one of the following  

  real  

  real + infinitesimal 

  real – infinitesimal 

  infinitesimal 

  infinitesimal with negative sign 

  infinite hyper-real 

  infinite hyper-real with negative sign 

 

Clearly, 

2.2   Every function from the reals into the reals is a hyper-

real function. 
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3. 

Integral of Hyper-real Function   
In [Dan3], we defined the integral of a Hyper-real Function. 

Let ( )f x  be a hyper-real function on the interval [ , . ]a b

The interval may not be bounded. 

( )f x  may take infinite hyper-real values, and need not be 

bounded. 

At each  

a x≤ ≤ b , 

there is a rectangle with base 
2

[ ,dx dxx x− +
2
], height ( )f x , 

and area  

( )f x dx . 

We form the Integration Sum of all the areas for the x ’s 

that start at x , and end at x b , a= =

[ , ]

( )
x a b

f x dx
∈
∑ . 

If for any infinitesimal dx , the Integration Sum has the 

same hyper-real value, then ( )f x  is integrable over the 

interval [ , .  ]a b

 11
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Then, we call the Integration Sum the integral of ( )f x  from 

, to x , and denote it by x = a b=

( )
x b

x a

f x dx
=

=
∫ . 

If the hyper-real is infinite, then it is the integral over  [ , , ]a b

If the hyper-real is finite,  

( )  real part of the hyper-real
x b

x a

f x dx
=

=

=∫ .  

 

3.1   The countability of the Integration Sum 

In [Dan1], we established the equality of all positive 

infinities: 

We proved that the number of the Natural Numbers,  

Card , equals the number of Real Numbers, 

,  and we have 2CardCard =

2 2( ) .... 2 2 ...
CardCardCard Card= = = = = ≡ ∞ . 

In particular, we demonstrated that the real numbers may 

be well-ordered.  
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Consequently, there are countably many real numbers in the 

interval , and the Integration Sum has countably many 

terms. 

[ , ]a b

While we do not sequence the real numbers in the interval, 

the summation takes place over countably many ( )f x dx . 

 

The Lower Integral is the Integration Sum where ( )f x  is 

replaced 

by its lowest value on each interval  
2 2

[ ,dx dxx x− + ] 

3.2                              
2 2[ , ]

inf ( )
dx dxx t xx a b

f t dx
− ≤ ≤ +∈

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑  

  

The Upper Integral is the Integration Sum where ( )f x  is 

replaced by its largest value on each interval  
2 2

[ ,dx dxx x− + ] 

3.3                                
2 2[ , ]

sup ( )
dx dxx t xx a b

f t dx
− ≤ ≤ +∈

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∑  

 

If the integral  is a finite hyper-real, we have 
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3.4  A hyper-real function has a finite integral if and only if 

its upper integral and its lower integral are finite, and differ 

by an  infinitesimal. 
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4. 

Delta Function   
In [Dan4], we defined the Delta Function, and established its 

properties 

1. The Delta Function is a hyper-real function defined 

from the hyper-real line into the set of two hyper-reals 

1
0,
dx

⎧ ⎫⎪⎪⎨⎪⎪ ⎪⎩ ⎭

⎪⎪⎬⎪
.  The hyper-real 0  is the sequence  0,0, 0,... .  

The infinite hyper-real  1
dx

 depends on our choice of 

.   dx

2. We will usually choose the family of infinitesimals that 

is spanned by the sequences 
1
n

,
2

1

n
,

3

1

n
,… It is a 

semigroup with respect to vector addition, and includes 

all the scalar multiples of the generating sequences 

that are non-zero. That is, the family includes 

infinitesimals with negative sign.   Therefore,  1
dx

  will 

mean the sequence n .  Alternatively, we may choose 

 15



Gauge Institute Journal,                                                                     H. Vic Dannon 
 

the family spanned by the sequences 

1

2n
,

1

3n
,

1

4n
,… Then, 1

dx
  will mean the sequence 

2n .   Once we determined the basic infinitesimal dx , 

we will use it in the Infinite Riemann Sum that defines 

an Integral in Infinitesimal Calculus.  

3. The Delta Function is strictly smaller than ∞  

4. We define,    
2 2
,

1
( ) ( )dx dxx x

dx
δ χ⎡ ⎤−⎢ ⎥⎣ ⎦

≡ ,    

             where   
2 2

2 2
,

1, ,
( )

0, otherwise
dx dx

dx dxx
xχ⎡ ⎤−⎢ ⎥⎣ ⎦

⎧ ⎡ ⎤⎪ ∈ −⎢ ⎥⎪ ⎣ ⎦= ⎨⎪⎪⎩
. 

5. Hence,  

 for ,   0x < ( ) 0xδ =

 at 
2
dx

x = − ,   jumps from   to ( )xδ 0
1
dx

,  

 for     
2 2

,dx dxx ⎡ ⎤∈ −⎢ ⎥⎣ ⎦ ,   
1

( )x
dx

δ = . 

 at   ,     0x =
1

(0)
dx

δ =  

 at  
2
dx

x = ,   drops from ( )xδ
1
dx

 to 0 . 

 for ,  . 0x > ( ) 0xδ =

 16
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  ( ) 0x xδ =

6. If 1
n

dx = ,  1 1 1 1 1 1
2 2 4 4 6 6

[ , ] [ , ] [ , ]( ) ( ),2 ( ), 3 ( )...x x xδ χ χ χ− − −= x  

7.  If 2
n

dx = ,  
2 2 2

1 2 3
( ) , , ,...

2 cosh 2cosh 2 2cosh 3
x

x x x
δ =  

8. If 1
n

dx = ,  2 3
[0, ) [0, ) [0, )( ) ,2 , 3 ,...x x xx e e eδ χ χ χ− − −

∞ ∞ ∞=  

9.         . ( ) 1
x

x

x dxδ
=∞

=−∞

=∫

10. ( )1
( )

2

k
ik x

k

x e ξδ ξ
π

=∞
− −

=−∞

− = ∫ dk  
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5. 

Random Walk  ( , )B tζ

The Random Walk of small particles in fluid is named after 

Brown, who first observed it, Brownian Motion.  It models 

other processes, such as the fluctuations of a stock price. 

In a volume of fluid, the path of a particle is in any direction 

in the volume, and of variable size   

 

5.1  Bernoulli Random Variables of the Walk 

We restrict the Walk here to the line, in uniform 

infinitesimal size steps dx : 

To the left, with probability  
1
2

p = , 

or to the right, with probability  

 18
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1
2

1q p= − = . 

At time t , after  

N  infinitesimal time intervals dt , 

t
dt

N = ,  is an infinite hyper-real, 

the particle is at the point 
x . 

At the i th  step we define the Bernoulli Random Variable,  

(right step)iB dx= 1 right step=

= − 2 left step=

,     ζ . 

                    ,     ζ . (left step)iB dx

where . 1,2,...,i N=

1
2

Pr( )iB dx= = , 

1
2

Pr( )iB dx= − = , 

1 1
2 2

[ ] ( ) 0iE B dx dx= ⋅ + − ⋅ = , 

2 2 21 1
2 2

[ ] ( ) ( ) ( )iE B dx dx dx= ⋅ + − ⋅ = 2  

2

2 2

0( )

Var[ ] [ ] ( [ ]) 0i i i

dx

B E B E B= − =  

                                

5.2  The Random Walk 

1 2( , ) ... NB t B B Bζ = + + +  

 19



Gauge Institute Journal,                                                                     H. Vic Dannon 
 

          is a Random Process with 

[ ( , )] 0E B tζ = , 

2Var[ ( , )] ( )B t N dxζ = . 

Proof:  Since the  are independent, iB

1

0 0

[ ( , )] [ ] ... [ ] 0NE B t E B E Bζ = + + =  

2 2

2
1

( ) ( )

Var[ ( , )] Var[ ] ... Var[ ] ( )N

dx dx

B t B B N dxζ = + + = .  

 

5.3      is a Bernoulli Random Variable  ( , ) ( , )B t dt B tζ + − ζ iB
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6.    

Integration Sums of   with 

respect to . 

( , )B tζ

( , )B tζ

In [Dan5], we defined the Integral ( ) ( , )
t b

t a

f t dB tζ
=

=
∫ : 

6.1  Integration Sums of  ( )f t  with respect to . ( , )B tζ

Let ( )f t  be a hyper-real function on the bounded time 

interval [ , .  ]a b ( )f t  need not be bounded. 

At each  a t , there is a Bernoulli Random Variable  b

t

≤ ≤

( , ) ( , ) ( , ) ( , ) ( , )idB t B t dt B t B t B t dζ ζ ζ ζ ζ= + − = = . 

We form the Integration Sum 

( ) ( , ) ( ) ( , )
t b t b

i
t a t a

f t dB t f t B tζ ζ
= =

= =

=∑ ∑ . 

For any dt ,  

(1)  the First Moment of the Integration Sum is 

0

( ) ( , ) ( ) [ ( , )] 0
t b t b

i i
t a t a

E f t B t f t E B tζ ζ
= =

= =

⎡ ⎤
⎢ ⎥ = =⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑ . 

(2) the Second Moment of the Integration sum is 
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2

( ) ( , ) ( ) ( , ) ( ) ( , )
t b t b b

i i
t a t a a

E f t B t E f t B t f B
τ

τ

ζ ζ τ
= = =

= = =

⎡ ⎤⎛ ⎞ ⎡⎛ ⎞⎛⎢ ⎥⎟ ⎟⎜ ⎜ ⎜
j ζ τ

⎞⎤⎟⎢ ⎥⎟ ⎟⎜ ⎜ ⎜=⎢ ⎥⎟ ⎟⎜ ⎜ ⎜ ⎟⎟⎢ ⎥⎟ ⎟⎢ ⎥⎜ ⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎟⎟⎠⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
∑ ∑ ∑  

                    ( ) ( ) [ ( , ) ( , )]
t b b

j i
t a a

f t f E B B t
τ

τ

τ ζ τ ζ
= =

= =

= ∑∑  

Since the Bernoulli Random Variables are independent,  

2 2[ ( , ) ( , )] [ ( , )] ( )j i iE B B t E B t dxζ τ ζ ζ= =  

only for t .  Then, τ=

2

2 2

(2 )

( ) ( , ) ( )( )
t b t b

i
t a t a D dt

E f t B t f t dxζ
= =

= =

⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ ⎟⎜ =⎢ ⎥⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑ , 

                                                       , 22 (
t b

t a

D f t d
=

=

= ∑ ) t

) t                                                       , 22 (
t b

t a

D f t d
=

=

= ∫

assuming  , and 2( ) (2 )dx D dt= ( )f t  integrable. 

Thus, for any dt , the Integration Sum is a unique well-

defined hyper-real Random Variable . ( )I ζ

We call  the integral of ( )I ζ ( )f t , with respect to  from 

, to x , and denote it by   

( , )B tζ

x = a b= ( ) ( , )
t b

t a

f t dB tζ
=

=
∫ . 

 22



Gauge Institute Journal,                                                                     H. Vic Dannon 
 

6.2  Integration Suns of , with respect to  ( , )B tζ ( , )B tζ

To define , we form the Integration Sum ( , ) ( , )
t b

t a

B t dB tζ ζ
=

=
∫

( , ) ( , ) ( , ) ( , )
t b t b

i
t a t a

B t dB t B t B tζ ζ ζ ζ
= =

= =

=∑ ∑ . 

(1)  the First Moment of the Integration Sum is 

( , ) ( , ) [ ( , ) ( , )]
t b t b

i i
t a t a

E B t B t E B t B tζ ζ ζ ζ
= =

= =

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑  

                                                  . 
2

2

( ) (2 )

[ ( , )] 2 (
t b

i
t a

dx D dt

E B t D b aζ
=

=
=

= =∑ )−

j

⎞⎤⎟

(2) the Second Moment of the Integration sum is 

2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
t b t b b

i i
t a t a a

E B t B t E B t B t B B
τ

τ

ζ ζ ζ ζ ζ τ ζ τ
= = =

= = =

⎡ ⎤⎛ ⎞ ⎡⎛ ⎞⎛⎢ ⎥⎟ ⎟⎜ ⎜ ⎜⎢ ⎥⎟ ⎟⎜ ⎜ ⎜=⎢ ⎥⎟ ⎟⎜ ⎜ ⎜ ⎟⎟⎢ ⎥⎟ ⎟⎢ ⎥⎜ ⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎟⎟⎠⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
∑ ∑ ∑  

This expression cannot be easily resolved, and we are not 

able to conclude that for any dt , the Integration Sum is a 

unique well-defined hyper-real Random Variable . ( )I ζ

We shall see that for a variety of reasons the integral of 

, with respect to  from x , to x , cannot 

be defined. 

( , )B tζ ( , )B tζ a b= =

 23
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7.    

( , ) ( , )
t b

t a

B t dB tζ ζ
=

=
∑   is  ill-defined 

Proof:  The Expectation of the Oscillation Integral [Dan3, 

p.46], of  with respect to  is  ( , )B tζ ( , )B tζ

( , ) ( , ) ( , )
t b

t a

E B t dt B t dB tζ ζ
=

=

⎡ ⎤
⎢ ⎥⎡ ⎤+ −⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦
∑ ζ

ζ

. 

Since  is a Bernoulli Random Variable , ( , ) ( , )B t dt B tζ + − iB

the Oscillation Integral of  with respect to  

equals 

( , )B tζ ( , )B tζ

2

2

( ) (2 )

[ ] (2 )( ) infinitesimal
t b

i
t a

dx D dt

E B D b a
=

=
=

= − ≠∑ , 

violating Riemann’s Oscillation Condition for Integrability of 

( , ) ( , )
t b

t a

E B t dB tζ ζ
−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
∑ .  

Thus,  diverges, and is not an Integral. ( , ) ( , )
t b

t a

E B t dB tζ ζ
−

=

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦
∑ ⎥

⎥

That is, the first Moment of the Random Variable 
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( , ) ( , )
t b

t a

B t dB tζ ζ
−

=
∑  

does not exist, and the Random Variable is ill-defined. 

Consequently, the Random Variable diverges, and is not an 

integral. 
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8.    

( , ) ( , )
t b

t a

B t dB tζ ζ
=

=
∑  depends on the 

choice of the intermediate 

points in the partition 
 

Proof: 

To converge to an Integral, the Integration sum 

( )( , ) ( , ) ( , ) ( , ) ( , )
t b t b

t a t a

E B t dB t E B t B t dt B tζ ζ ζ ζ ζ
= =

= =

⎡ ⎤ ⎡
⎢ ⎥ ⎢= +⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣
∑ ∑

⎤
⎥− ⎥
⎥⎦
 

should remain unchanged for any choice of the intermediate 

points between , and . ( , )B tζ ( , )B t dtζ +

We check three different sets of intermediate points    

(1) Intermediate points at ( )1
2

( , ) ( , )B t dt B tζ ζ+ + . 

The Integration Sum becomes 

( )(1
2

( , ) ( , ) ( , ) ( , )
t b dt

t a

B t dt B t B t dt B tζ ζ ζ ζ
= −

=

+ + + −∑ ) =  
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             ( )2 21
2

( , ) ( , )
t b dt

t a

B t dt B tζ ζ
= −

=

= + −∑ , 

             ( )2 21
2

( , ) ( , )B b B aζ ζ= − . 

(2) Intermediate points at ( , )B tζ   

The Integration Sum is,  

( )( , ) ( , ) ( , )
t b

t a

B t B t dt B tζ ζ ζ
=

=

+ −∑ =  

( )( )

( )2 21
2

1
2

( , ) ( , )

( , ) ( , ) ( , ) ( , )
t b dt

t a

B b B a

B t dt B t B t dt B t

ζ ζ

ζ ζ ζ
= −

=

−

+ + + −∑ ζ  

( )( )
2

1
2

( , ) ( , ) ( , ) ( , )

i

t b dt

t a
B

B t dt B t B t dt B tζ ζ ζ ζ
= −

=

− + − + −∑  

Then, 

( )( , ) ( , ) ( , )
t b dt

t a

E B t B t dt B tζ ζ ζ
= −

=

⎡ ⎤
⎢ ⎥+ −⎢ ⎥
⎢ ⎥⎣ ⎦
∑ =  

                       
2

2 21 1
2 2

( ) (2 )

( , ) ( , ) [ ]
t b

i
t a

dx D dt

E B b B a E Bζ ζ
=

=
=

⎡ ⎤= − −⎢ ⎥⎣ ⎦ ∑ 2  

                       2 21
2

( , ) ( , ) ( )E B b B a D b aζ ζ⎡ ⎤= − −⎢ ⎥⎣ ⎦ − . 

(3)  Intermediate points at ( , )B t dtζ + , 
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the Integration Sum is,  

( )( , ) ( , ) ( , )
t b dt

t a

B t dt B t dt B tζ ζ ζ
= −

=

+ + −∑ =  

( )( )

( )2 21
2

1
2

( , ) ( , )

( , ) ( , ) ( , ) ( , )
t b dt

t a

B b B a

B t dt B t B t dt B t

ζ ζ

ζ ζ ζ
= −

=

−

+ + + −∑ ζ  

( )( )
2

1
2

( , ) ( , ) ( , ) ( , )

i

t b dt

t a
B

B t dt B t B t dt B tζ ζ ζ ζ
= −

=

+ + − + −∑  

Then, 

( )( , ) ( , ) ( , )
t b dt

t a

E B t dt B t dt B tζ ζ ζ
= −

=

⎡ ⎤
⎢ ⎥+ + −⎢ ⎥
⎢ ⎥⎣ ⎦
∑ =  

                      
2

2 21 1
2 2

( ) (2 )

( , ) ( , ) [ ]
t b

i
t a

dx D dt

E B b B a E Bζ ζ
=

=
=

⎡ ⎤= − +⎢ ⎥⎣ ⎦ ∑ 2  

                       2 21
2

( , ) ( , ) ( )E B b B a D b aζ ζ⎡ ⎤= − +⎢ ⎥⎣ ⎦ − . 

Each of the three cases, has ( , ) ( , )
t b

t a

E B t dB tζ ζ
=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
∑  that differs 

from the others by non-infinitesimal number. 

Thus, the First Moment of the Random Variable 

 is undefined.  ( , ) ( , )
t b

t a

B t dB tζ ζ
=

=
∑
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That is, the Integration Sum is ill-defined, and does not 

exist. 

Indeed, for any intermediate point 

( , ) (1 ) ( , )B t dt B tλ ζ λ ζ+ + − ,     , 0 1λ≤ ≤

the integration sum is different 

( )( , ) (1 ) ( , ) ( , ) ( , )
t b

t a

E B t dt B t B t dt B tλ ζ λ ζ ζ ζ
=

=

⎡ ⎤
⎢ ⎥⎡ ⎤+ + − + −⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦
∑  

    ( )

2 21
2

( , ) ( , ) ( )

( , ) ( , ) ( , )
t b

t a

E B b B a D b a

E B t dt B t dt B t

ζ ζ

λ ζ ζ ζ
=

=

⎡ ⎤− + −⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= + + −⎢ ⎥
⎢ ⎥⎣ ⎦
∑ +  

                       ( )

2 21
2

( , ) ( , ) ( )

(1 ) ( , ) ( , ) ( , )
t b

t a

E B b B a D b a

E B t B t dt B t

ζ ζ

λ ζ ζ ζ
=

=

⎡ ⎤− − −⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥+ − + −⎢ ⎥
⎢ ⎥⎣ ⎦
∑ . 

    2 21 1
2 2

( , ) ( , ) ( ) ( )E B b B a D b aζ ζ λ⎡ ⎤= − + − −⎢ ⎥⎣ ⎦ .  
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9. 

The Myth that Lebesgue’s 

Integral generalizes Riemann’s 

Ito’s use of Lebesgue’s Integration, is consistent with his  

ignorance of the basics of Integration, and suggests a belief 

in the Myth that Lebesgue’s Integration generalizes 

Riemann’s .  But in [Dan6] we observed that  

 Riemann’s Function [Dan6] is Riemann-Integrable over 

a Non-Measurable set of Discontinuities,  

 the Lebesgue integral cannot be defined over the non-

measurable  rationals, while the Riemann Integral 

may be  defined over the rationals,  

Thus, we concluded that 

Riemann Integral generalizes Lebesgue’s, and the Lebesgue-

integrable functions are a subset of the Riemann-integrable 

functions. 

Riemann’s requirements that  

o the oscillation integral must be infinitesimal, and 
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o the integral may not depend on the choice of the 

intermediate points, 

are the foundations of any treatment of integration. 

The misinterpretation of the  ill-defined Random Variable 

( , ) ( , )
t b

t a

B t dB tζ ζ
=

=
∑  

as different Integrals, named after Ito, for ,  and after 

Stratonovich for 

1λ =

1
2

λ = ,.., misses the point that these 

different values prove that there is no integral. 

Ito never comprehended why ( )f t  of the Wiener Integral 

cannot be replaced by a Random Process ( , )f tζ , and believed 

that this can be resolved by applying the “more general” 

Lebesgue Integral.    

As demonstrated in  [Dan7],  Lebesgue’s theories of measure 

and integration are conducive to delusionary claims. 
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10.     

( , ) ( , )
t b

t a

B t dB tζ ζ
=

=
∑  violates the 

Fundamental Theorem of the 

Integral Calculus. 
The Fundamental Theorem of Calculus guarantees that 

Integration and Differentiation are well defined inverse 

operations, that when applied consecutively yield the 

original function. 

It is well known to hold in the Calculus of Limits under 

given conditions. In the Infinitesimal Calculus, the 

Fundamental Theorem holds with almost no conditions. 

 

In [Dan5], we established 

10.1   Let ( )f x  be Hyper-real Integrable on[ ,   ]a b

          Then,  for any ,      [ , ]x a b∈ p.v.D ( ) ( )
u x

u a

f u du f x
=

=

=∫  
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Consequently, if ,   ( ) ( )
t x

t a

F x f t dt
=

=

= ∫

( ) ( ) ( ) ( )
t b t b

t a t a

f t dt dF t F b F a
= =

= =

= = −∫ ∫  

Thus, the Fundamental Theorem of Calculus requires that 

we have 

( )2 21 1 1
2 2 2

( , ) ( , ) ( , ) ( , ) ( , )
t b t b

t a t a

B t dB t d B t B b B aζ ζ ζ ζ ζ
= =

= =

= = −∫ ∫ 2 , 

and 

2 21
2

( , ) ( , ) ( , ) ( , )
t b

t a

E B t dB t E B b B aζ ζ ζ ζ
=

=

⎡ ⎤
⎢ ⎥ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎣ ⎦
∫ . 

Instead, Ito has an additional λ -dependent term  

2 21 1
2 2

( , ) ( , ) ( , ) ( , ) ( ) ( )
t b

t a

E B t dB t E B b B a D b aζ ζ ζ ζ λ
=

=

⎡ ⎤
⎢ ⎥ ⎡ ⎤= − + −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎣ ⎦
∫ −  

Thus, Ito’s ill-defined Integral violates the Fundamental 

Theorem of the integral Calculus.  
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11. 

Ito’s Process and Ito’s Formula 

11.1  Ito’s Process  

is defined as the solution  of the differential Equations ( , )X tζ

( , ) ( , ) ( , ) ( , )dX t f t dB t g t dtζ ζ ζ ζ= + . 

Then, 

( , ) ( , ) ( , ) ( , ) 0E dX t f t dB t g t dtζ ζ ζ ζ⎡ ⎤− −⎣ ⎦ = , 
and 

2
( , ) ( , ) ( , ) ( , ) 0E dX t f t dB t g t dtζ ζ ζ ζ⎡ ⎤− −⎢ ⎥⎣ ⎦

=

≈

 

Summation over time of the first Moment equation yields 

the meaningless, 

0 0
ill-defined Ito Integral

( , ) ( , 0) ( , ) ( , ) ( , ) 0
tt

E X t X f dB g d
ττ

τ τ

ζ ζ ζ τ ζ τ ζ τ τ
==

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∫ . 

 

11.2  Ito’s Formula 

Let   be a Random Walk ( , )B B tζ=

         be an Ito Process,  ( , )X X tζ=
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         and .   ( , )F F X t=

Then, 

( , ) ( , ) ( , )dX f t dB t g t dtζ ζ ζ= + , 

2 2 2 2( ) ( ) 2 ( ) ( )dX f dB fg dB dt g dt= + + 2

2

2

, 

          2 2 2 2[( ) ] ( ) 2 ( ) ( )E dX E f dB fg dB dt g dt⎡ ⎤= + +⎢ ⎥⎣ ⎦

                        
2

2 2 2

0( ) (2 )

[ ] [( ) ] 2 [ ] [ ] [ ]( )

dx D dt

E f E dB E fg E dB dt E g dt

=

= + +

                        2[ ](2 )E f D dt≈

Substituting into 

2
2

2

1
( )

2
F F F

E dF dX dX dt
X tX

⎡ ⎤∂ ∂ ∂⎢ ⎥− − −⎢ ⎥∂ ∂∂⎣ ⎦
0≈ , 

we have,  Ito’s Formula 

2
2

2
0

F F F F
E dF fdB g f D dt

X X tX

⎡ ⎧ ⎫⎪ ⎪∂ ∂ ∂ ∂⎪ ⎪⎢ ⎥− − + +⎨ ⎬⎢ ⎥⎪ ⎪∂ ∂ ∂∂⎪ ⎪⎣ ⎩ ⎭

⎤
≈

⎦
. 

The Formula is stated loosely, ([Oksendal], [Kuo]), dropping 

the Expectation operator.  

In particular, the Variance of the Random Process has to be 

infinitesimal.  That is, 

22
2

2
0

F F F F
E dF fdB g f D dt

X X tX

⎡ ⎤⎧ ⎫⎪ ⎪∂ ∂ ∂ ∂⎢ ⎥⎪ ⎪− − + +⎨ ⎬⎢ ⎥⎪ ⎪∂ ∂ ∂⎢ ⎥∂⎪ ⎪⎩ ⎭⎣ ⎦

≈ . 
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So far, the Formula was applied after a summation over time 

that generated an Integral Formula with the meaningless 

Ito Integral, ( , ) ( , )
t

F
f t dB t

X
ζ ζ

∂
∂∑ .   

That Integral Formula is referred to as  “The Fundamental 

Theorem of the Stochastic Integral Calculus”… 

 

11.2  Example of the Ito Formula 

Taking                          , 2( ( , ), ) ( , )F X t t B tζ ζ=

( , ) ( , )X t B tζ ζ= , 

( , ) 1f tζ = ;     ( , ) 0g tζ =

2
2 2

2
1 0 1

2 02

( ) 0

B

F F F F
E d B f dB g f D dt

X X tX

⎡ ⎧⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪∂ ∂ ∂ ∂⎢ ⎪− − + +⎨ ⎬⎢ ⎥⎪ ⎪∂ ∂ ∂∂⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎩

⎫ ⎤
⎪ ⎥ ≈

⎭ ⎦

t

 

2( ) 2 2 0E d B BdB Ddt⎡ ⎤− − ≈⎢ ⎥⎣ ⎦ . 

This leads the books to   2( ) 2 2d B BdB Ddt= +

which is summed up over time to yield the “Fundamental 

etc.”,  . 2

0

ill-defined Ito Integral

( , ) ( , ) ( , ) 2( )
t

B t B dB D
τ

τ

ζ ζ τ ζ τ
=

=

= +∑
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