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Abstract A number is algebraic if it is a zero of a polynomial in 

integer coefficients.  

The algebraic numbers form a field with respect to addition , and 

multiplication. The sum, and product of two algebraic numbers is 

an algebraic number. 

A number that is not algebraic, transcends algebraic numbers, 

and is called transcendental. The following are believed to be 

transcendental  
e (Hermit), 

π (Lindemann), 

rationale (Hermit), 

algebraice (Lindemann), 

irrational algebraic(algebraic)  (Gelfond-Schneider). 

( ) ( 1)i i ie eπ π − −= = −

( ) ( 1)n i ni nie eπ π − −= = −

Euler defined his Gamma Constant γ  by the infinite sum 
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( ) ( )11 1 1 3 4
2 3 2 3

1 ... log2 log log ... log N
N N

++ + + + − + + + + =

11 3 1 4 1
2 2 3 3

(1 log2) ( log ) ( log ) ... ( log )N
N N

+= − + − + − + + −

And computed it with his summation formula.  

0.577218....γ =

Vacca expanded Gamma in infinite series of reciprocals of all the 

natural numbers. 

The series sum has a denominator that includes the product of all 

the prime numbers. But there is no number that is divided by all 

the primes. Hence, no number for the denominator of a rational 

number that equals the series.  

Therefore,   

Euler's Gamma is Irrational.

The same argument applies to show that π , e , (3), (5), (7),ζ ζ ζ ... are 

Not rational numbers. 

Vacca series expansion of Gamma applies to show that  

Gamma is Not a Liouville number. 

And we cannot say that Gamma is transcendental on account of 

its being a Liouville number which it is not. 

We show that 

Gamma is the limit of a sequence nγ  of transcendentals. 

This Does Not mean that Gamma is transcendental But that  

As far as we can ever compute, for any finite n , 
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the partial sum nγ  is a transcendental number. 

Indeed, a sequence of transcendentals need not converge to a 

transcendental number.  

In 2022, we derived1 an expansion for 1, which we named The 

Archimedes Series for 1

2 2

6 2 5 2

3 5 7 9171 2 62
4 3 4 15 4 315 4 2835 4

(819)(691) 2 (2 1)11 13 2 15461
4 4 (2 )! 43 5 7(11)(91) 3 5 7(11)(13)

1 ( ) ( ) ( ) ( )

  ( ) + ( ) +.... ( ) ..
n n

n
nn

B

π π π π π

π π π− −

= + + + + +

+ + +

where nB =Bernoulli Numbers 

Since π  is transcendental, the Partial Sums of the Archimedes 

Series for 1 are transcendental numbers that converge to the 

algebraic number 1 

And the 

Transcendental partial sums 1n  transform to Algebraic  1

We shall say that besides being an Algebraic Number,  

1 is a Sequentially Transcendental Number 

That is, there is a sequence of transcendentals that converges to 1. 

In fact, for an infinite hyper-real N  we cannot compute the 

algebraic partial sum with N  transcendental terms. 

As far as we can ever compute, for any finite n , 

the partial sum 1n  is Transcendental. 

Similarly, for γ

1 H. Vic Dannon, "Archimedes Series", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11 
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As far as we can ever compute, for any finite n , 

the partial sum nγ  is a Transcendental number. 

This leads us to discuss the meaning of Sequential Transcendence 

versus  Transcendence.  

And we conclude that  

Sequential Transcendence is  

a superior characterization of a number. 
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1. 

Zeta Series for Gamma
For an infinite Hyper-real N ,  Euler defined 

1 3 1 4 1 1
(1 log2) log log ... log

2 2 3 3

N

N N
γ

     +    = − + − + − + + −               

Proof: the Harmonic Series is  

1 1 1 1 1
1 .... ...

2 3 4 1N N
+ + + + + + +

+

Euler defined  ( )s N  by                                 

1
( )

1
ds N dN

N
=

+
. 

( ) log(1 )s N Nγ= + +

1 1 1
1 ...

2 3 N
= + + + +

1 1 1
1 ... log(1 )

2 3
N

N
γ = + + + + − +

1 1 1 3 4 1
1 ... log2 log log ... log

2 3 2 3

N

N N

   +  = + + + + − + + + +        

1 3 1 4 1 1
(1 log2) log log ... log

2 2 3 3

N

N N

     +    = − + − + − + + −               
.

From this γ  can be expanded in zeta series 
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1 1 1 1
(2) (3) (4) (5) ... 0.577218....

2 3 4 5
γ ζ ζ ζ ζ= − + − + =

(2)ζ = 1.6449340668482264364... 

(3)ζ =1.2020569031595942853...

(4)ζ =1.0823232337111381915... 

(5)ζ =1.0369277551433699263...

(6)ζ =1.0173430619844491397...  

(7)ζ =1.0083492773819228268...

(8)ζ =1.0040773561979443393... 

(9)ζ =1.0020083928260822144...

(10)ζ =1.0009945751278180853... 

(11)ζ =1.0004941886041194645...

(12)ζ =1.0002460865533080482... 

(13)ζ =1.0001227133475784891...

(14)ζ =1.0000612481350587048... 

(15)ζ =1.0000305882363070204...

(16)ζ =1.0000152822594086518... 
....................................................... 

Proof: 

1 1 1 1 1 1
log 1 ...

1 1 2 3 4 5

  + = − + − + −  

⇒
1 1 1 1

1 log2 ...
2 3 4 5

− = − + − −
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2 3 4 5

1 1 1 1 1 1 1 1 1 1
log 1 ...

2 2 2 3 4 52 2 2 2

  + = − + − + −  

⇒
2 3 4 5

1 3 1 1 1 1 1 1 1 1
log ....

2 2 2 3 4 52 2 2 2
− = − + − +

2 3 4 5

1 1 1 1 1 1 1 1 1 1
log 1 ...

3 3 2 3 4 53 3 3 3

  + = − + − + −  

⇒
2 3 4 5

1 4 1 1 1 1 1 1 1 1
log ...

3 3 2 3 4 53 3 3 3
− = − + − +

2 3 4 5

1 1 1 1 1 1 1 1 1 1
log 1 ...

4 4 2 3 4 54 4 4 4

  + = − + − + −  

⇒
2 3 4 5

1 5 1 1 1 1 1 1 1 1
log ...

4 4 2 3 4 54 4 4 4
− = − + − +

........................................................................... 

2 3 4 5

1 1 1 1 1 1 1 1 1 1
log 1 ...

2 3 4 5N N N N N N

  + = − + − + −  

⇒
2 3 4 5

1 1 1 1 1 1 1 1 1 1
log ...

2 3 4 5

N

N N N N N N

+
− = − + − +

( ) 1 3 1 4 1 1
1 log2 log log log

2 2 3 3

N

N N
γ

     +    = − + − + − + ⋅ ⋅ ⋅ + −               

2 2 2 2

(2)

1 1 1 1 1
1 ... ...

2 2 3 m N

ζ

 = + + + + +   

3 3 3 3

(3)

1 1 1 1 1
1 ... ...

3 2 3 m N

ζ

 − + + + + + +   
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4 4 4 4

(4)

1 1 1 1 1
1 ... ...

4 2 3 m N

ζ

 + + + + + + +   

                  ....................................................................................... 
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2. 

γ  is Irrational
Vacca Series2 for γ

1 1
1

2 3

1 1 1 1
    2

4 5 6 7

1 1 1 1 1 1 1 1
    3

8 9 10 11 12 13 14 15

        .....................................................................

1 1
     + .............

2 2 1m m
m

γ
 = −   

 + − + −   
 + − + − + − + −   

− +
+ 1 1

1 1
.......

2 2 2 1
   ..............................................................................

m m+ +

  + −   − −

γ  is Irrational 

Proof:   

1 1

1
  1

2 3
1 1

    2
4 5 6 7

1 1 1 1
    3

8 9 10 11 12 13 14 15

        .....................................................................

1 1
     + ...........

2 (2 1) (2 2)(2 1)m m m m
m

γ

+ +

=
⋅

 + +   ⋅ ⋅ 
 + + + +   ⋅ ⋅ ⋅ ⋅ 

+ +
+ − −

.....
   +   

2 Steven R. Finch, "Mathematical Constants", Cambridge U Press, 2003, p.31 
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γ = 0.57721 56649 01532 ..... 

is the sum of infinitely many rational numbers with common 

denominator that is the product of all the natural numbers,  

2 3 4 ... !N⋅ ⋅ ⋅ =

which includes the product of all the prime numbers 

1 2 3 ....p p p⋅ ⋅ ⋅

There is no finite natural number  

q

that is divided by all the primes.  

Thus, there is no rational number p
q

 that equals Gamma.  

Therefore, Gamma is Not a rational number.  

That is, Gamma is Irrational.
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3. 

γ  is Not a Liouville Number 
Liouville showed that  

If 
α =  the zero of a reduced polynomial  

( )nP x   of order  n , 

and if α  is the limit of a sequence of rational numbers, 

m

m

p

q
, 

so that 

mp , and mq  are relatively prime, 

And if there is a constant 0mC >  so that 

m mq C>
Then, 

1
1

n

m

m m

p

q q
α

+ − >    

The negation of this statement is a criteria for transcendence. 

If
τ =  limit of a sequence of rational numbers, 

m

m

p

q
, so that mp , and mq  are relatively prime, 

and if for each 1,2,3,...m = , 
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1
1

m

m

m m

p

q q
τ

+ − <    
Then,  

transcendentalτ = . 

The partial sums of the Vacca Series are such rationals 

1 1

1
1
2 3

1 1
    2

4 5 6 7

1 1 1 1
    3

8 9 10 11 12 13 14 15

        .....................................................................

1 1
     + ...........

2 (2 1) (2 2)(2 1

m

m

m m m m

p

q

m
+ +

=
⋅

 + +   ⋅ ⋅ 
 + + + +   ⋅ ⋅ ⋅ ⋅ 

+ +
+ − − )

     

1

1 1

(2 1)!m
mq

+
=

−

1 1 2 2

1 1

2 (2 1) (2 2)(2 1)
( 1)( .... ) ....m

m m m m
m

p

q
mγ

+ + + ++ − −
− = + + + +

is not bounded by  

11

1

1 1

(2 1)!

mm

m
mq

++

+

     =        − 
 for all 1,2,3,...m =

Therefore, γ  is not a Liouville Number.
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4. 

γ  is Sequentially Transcendental 
For 1,2, 3, 4...n =

1 1 1
1 ... log( 1) transcendental

2 3n n
n

γ ≡ + + + + − + =

Proof: 

rational transcendental

1 1 1 1
1 ... log

2 3 1n n n
γ ≡ + + + + +

+ 

By Lindemann, algebraic  = transcendentaleτ τ= ⇒

Therefore,  

1
log

1 1

1
Ne

N
+ = =

+
algebraic ⇒ 1

log
1N

=
+

transcendental 

Therefore,  

!
n

n

p

n
γ − = transcendental. 

If nγ =algebraic, then by the field property of algebraic numbers, 

!
n

n

p

n
γ − =algebraic.  

From that contradiction, it follows that nγ =transcendental.

For the infinite hyper-real number N , 

1 3 1 1
(1 log2) log ... log

2 2N

N

N N
γ

   +  = − + − + + −        
. 
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1

1 1 1 2
(1 log2) ... log log

1 1N

N N

N N N N
γ +

   + +  = − + + − + −      + +   

1

1 2
log

1 1N N

N

N N
γ γ+

+
− = −

+ +

1 1
log 1

1 1N N

 = − +  + + 

2 31 1 1 1 1 1
( ) ( ) ...

1 1 2 1 3 1N N N N

 = − − + −  + + + + 

2 3 41 1 1 1 1 1
( ) ( ) ( ) ...

2 1 3 1 4 1N N N
= − + −

+ + +

21
Order of ( )

1N
=

+

That is, Nγ  is infinitesimally close to γ . 

Gamma is the limit of a sequence nγ  of transcendentals. 

This Does Not mean that Gamma is transcendental But that  

As far as we can ever compute, for any finite n

the approximation nγ  is transcendental. 

Indeed, a sequence of transcendentals need not converge to a 

transcendental number.  

In 2022, we derived3 an expansion for 1, which we named The 

Archimedes Series for 1 

3 H. Vic Dannon, "Archimedes Series", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11 
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2 2

6 2 5 2

3 5 7 9171 2 62
4 3 4 15 4 315 4 2835 4

(819)(691) 2 (2 1)11 13 2 15461
4 4 (2 )! 43 5 7(11)(91) 3 5 7(11)(13)

1 ( ) ( ) ( ) ( )

  ( ) + ( ) +.... ( ) ..
n n

n
nn

B

π π π π π

π π π− −

= + + + + +

+ + +

where nB =Bernoulli Numbers 

Since π  is transcendental, the Partial Sums of the Archimedes 

Series for 1 are transcendental numbers that converge to the 

algebraic number 1 

And the 

Transcendental partial sums 1n  transform to Algebraic  1

We shall say that besides being an Algebraic Number,  

1 is a Sequentially Transcendental Number 

That is, there is a sequence of transcendental numbers that 

converges to 1. 

In fact, for an infinite hyper-real N  we cannot compute the 

algebraic partial sum with N  transcendental terms. 

As far as we can ever compute, for any finite n , 

the partial sum 1n  is a Transcendental number. 

We conclude that 

γ  is Sequentially Transcendental Number 

Meaning that, 

As far as we can ever compute, for any finite n , 

the partial sum nγ  is a transcendental number. 
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5. 

eγ  is Irrational and Sequentially 

Transcendental Number 
Irrationality

Using Vacca expansion for γ

2

1

0!
1 1 1 1 1 1 1 1

+ 1 2 3 ..
1! 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1
1 2 3 ...

2 ! 2 3 4 5 6 7 8 9 10 11 12 13 14 15

eγ = +

         + + + + + + +          ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅     
       + + + + + + + +       ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    

is the sum of infinitely many rational numbers with common 

denominator that includes the product of all the prime numbers 

1 2 3 ....p p p⋅ ⋅ ⋅

There is no finite natural number  

q

that is divided by all the primes.  

Thus, there is no rational number p
q

 that equals eγ

Therefore, eγ  is Not a rational number.  

That is, eγ  is Irrational.
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Sequentially Transcendental

For 1,2, 3,...,n N= ,      Transcendentalneγ =

Proof:  

1 1 1 3 4 1
1 ... log2 log log .... log

2 3 2 3n

n

n ne e eγ
+

+ + + + − − − − −
=

By Hermit, 
1 1 1

1 ...
rational2 3 ne e

+ + + +
= =  transcendental 

1 2 3
loglog log log

12 3 4(transcendental) ...n

n

ne e e e eγ +=

1
algebraic

1

1 2 3 1
(transcendental) ...

2 3 4 1

n

nn

n n

=
+

/ / − /
=

/ / +/

Therefore,  
( 1) nn eγ+ =transcendental. 

If neγ = algebraic, then by the field property of algebraic numbers, 

( 1) nn eγ+ =  algebraic.  

From that contradiction it follows that neγ = transcendental.

This holds for any 1,2,3,4,...n = ,  

Consequently, 

Sequentially Transcendentaleγ =
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6. 

eπγ  is Irrational and Sequentially 

Transcendental Number
Irrationality

Using Vacca expansion for γ , and Leibniz expansion for π

2 2
2

1

0!
1 1 1 1 1 1

+ 1 2 ... 4 1 ...
1! 2 3 4 5 6 7 3 5

1 1 1 1 1 1
1 2 ... 4 1 ... ...

2 ! 2 3 4 5 6 7 3 5

eγπ = +

         + + + − + −          ⋅ ⋅ ⋅     
         + + + + − + − +          ⋅ ⋅ ⋅     

is the sum of infinitely many rational numbers with common 

denominator that includes the product of all the prime numbers 

1 2 3 ....p p p⋅ ⋅ ⋅

There is no finite natural number  

q

that is divided by all the primes.  

Thus, there is no rational number p
q

 that equals eγπ

Therefore, eγπ  is Not a rational number.  

That is, eγπ is Irrational.
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Sequentially Transcendental

For 1,2,3,...,n N= ,     transcendentaln neπ γ =

Proof:  
11 1 1 1 ( 1)

1 ... 4 1 ...
2 3 3 2 1

log2 log

n

n n rational

n n

Transcendental

e e

e

γ π

−   −  + + + + − + +    −   

− −

=

×





13 4 1 1 ( 1)
log .... log 4 1 ...

2 3 3 2 1

nn

n n

−  + −   − − − − + +     −  

11 ( 1)1 2 3 4 1 ...loglog log log 3 2 112 3 4

1

1

( )([ ][ ][ ]...[ ])

n
n

nn

n

Transcendental e e e e

− −  − + +   − +

+

= 

11 ( 1)
4 1 ...

3 2 11
1

(transcendental)( )

n

n

n

− −  − + +   − 
+

=

Therefore,  
11 ( 1)

4 1 ...
3 2 1

Algebraic

( 1)

n

n n
n

n eπ γ

− −  − + +   − + = transcendental. 

If n neπ γ =algebraic, then by the field property of algebraic 

numbers, 

11 ( 1)
4 1 ...

3 2 1

Algebraic

( 1)

n

n n
n

n eπ γ

− −  − + +   − + = algebraic.  

From that contradiction, it follows that n neπ γ =transcendental.

This holds for any 1,2,3,4,...n = ,  

Consequently, 

Sequentially Transcendentaleπγ =
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7. 

eγ  is Irrational and Sequentially 

Transcendental Number
Irrationality

Using Vacca expansion for γ , and Euler's expansion for e

1 1 1 1 1 1 1
1 2 ... ...
2 3 4 5 6 7 0! 1! 2 ! 3 !

eγ
        = + + + + + + +          ⋅ ⋅ ⋅    

is the sum of infinitely many rational numbers with common 

denominator that includes the product of all the prime numbers 

1 2 3 ....p p p⋅ ⋅ ⋅

There is no finite natural number  

q

that is divided by all the primes.  

Thus, there is no rational number p
q

 that equals eγπ

Therefore, eγπ  is Not a rational number.  

That is, eγπ is Irrational.

Sequentially Transcendental

For 1,2, 3,...,n N= ,     transcendentaln neγ =

Proof:  
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1 1 1
2! 3! !

rational algebraic

(transcendental)(1 1 ... )n n n
eγ = + + + + +



Therefore, 

algebraic
n neγ

=transcendental. 

If n neγ =algebraic, then by the field property of algebraic 

numbers, algebraic
algebraic

algebraic algebraic
n neγ

= = .  

From that contradiction, it follows that n neγ = transcendental.

This holds for any 1,2,3,4,...n = , including the hyper-real number 

N . Consequently, 

Sequentially Transcendental Numbereγ =
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8. 

γπ is Irrational and Sequentially 

Transcendental Number
Irrationality

Using Vacca expansion for γ , and Leibniz expansion for π

1 1 1 1 1
1 2 ... 4 1 ...
2 3 4 5 6 7 3 5

γπ
         = + + + − + −          ⋅ ⋅ ⋅     

is the sum of infinitely many rational numbers with common 

denominator that includes the product of all the prime numbers 

1 2 3 ....p p p⋅ ⋅ ⋅

There is no finite natural number  

q

that is divided by all the primes.  

Thus, there is no rational number p
q

 that equals γπ

Therefore, γπ  is Not a rational number.  

That is, γπ  is Irrational.

Sequentially Transcendental

For 1,2, 3,...,n N= ,     transcendentaln nγ π =

Proof:  
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1

algebraic

1 1 1 ( 1)
(transcendental)4 1 ...

3 5 7 2 1

n

n n n
γ π

+ −  = − + − + +   − 

Therefore, 
algebraic

n nγ π
=transcendental. 

If n nγ π = algebraic, then by the field property of algebraic 

numbers, 
algebraic

n nγ π
=algebraic.  

From that contradiction, it follows that n nγ π = transcendental.

This holds for any 1,2,3,4,...n = ,  

Consequently, 

Sequentially Transcendental Numberγπ =
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9. 

eγ +  is Irrational and 

Sequentially Transcendental 

Number 
Irrationality

Using Vacca expansion for γ , and Euler's expansion for e

1 1 1 1 1 1 1
1 2 ... ...
2 3 4 5 6 7 0! 1! 2! 3 !

eγ
         + = + + + + + + + +          ⋅ ⋅ ⋅     

is the sum of infinitely many rational numbers with common 

denominator that includes the product of all the prime numbers 

1 2 3 ....p p p⋅ ⋅ ⋅

There is no finite natural number  

q

that is divided by all the primes.  

Thus, there is no rational number p
q

 that equals eγ +

Therefore, eγ +  is Not a rational number.  

That is, eγ +  is Irrational.

Sequentially Transcendental
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For 1,2, 3,...,n N= ,     transcendentaln neγ + =

Proof:  

rational algebraic

1 1 1
(transcendental) (1 1 ... )

2! 3! !n ne n
γ + = + + + + + +



Therefore,  
algebraicn neγ + − = transcendental. 

If n neγ + =algebraic, then by the field property of algebraic 

numbers, algebraicn neγ + − = algebraic.  

From the contradiction, it follows that n neγ + =transcendental.

This holds for any 1,2,3,4,...n = ,  

Consequently, 

Sequentially Transcendental Numbereγ + =
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10. 

γ π+  is Irrational and 

Sequentially Transcendental 

Number 
Irrationality

Using Vacca expansion for γ , and Leibniz expansion for π

1 1 1 1 1
1 2 ... 4 1 ...
2 3 4 5 6 7 3 5

γ π
         + = + + + + − + −          ⋅ ⋅ ⋅     

is the sum of infinitely many rational numbers with common 

denominator that includes the product of all the prime numbers 

1 2 3 ....p p p⋅ ⋅ ⋅

There is no finite natural number  

q

that is divided by all the primes.  

Thus, there is no rational number p
q

 that equals γ π+

Therefore, γ π+  is Not a rational number.  

That is, γ π+  is Irrational.

Sequentially Transcendental
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For 1,2, 3,...,n N= ,     transcendentaln nγ π+ =

Proof:  

1

algebraic

1 1 1 ( 1)
(transcendental) 4 1 ...

3 5 7 2 1

n

n n n
γ π

+ −  + = + − + − + +   − 

Therefore, algebraicn nγ π+ − =transcendental. 

If n nγ π+ = algebraic, then by the field property of algebraic 

numbers, algebraicn nγ π+ − =algebraic.  

From the contradiction, it follows that 

n nγ π+ = transcendental.

This holds for any 1,2,3,4,...n = ,  

Consequently, 

Sequentially Transcendental Numberγ π+ =
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11. 

Bernoulli Series  for γ
1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 162 4 6 8 10 12 14 16
...B B B B B B B Bγ = + + + + + + + +

The Bernoulli Numbers are all rational numbers: 

21 1 1
22 2 6

8.(3) 10B − = ≈  

31 1 1
44 4 30

8.(3) 10B −−  = ≈ −  

31 1 1
66 6 42

4 10B − = ≈  

31 1 1
88 8 30

4.1(6) 10B −−  = ≈ −  

31 1 5
1010 10 66

7.(57) 10B − = ≈  

21 1 691
1212 12 2730

2.1 10B −−  = ≈ −  

271 1
1414 14 6

8.(3) 10B − = ≈  

136171 1
1616 16 510

4.432 10B −−  = ≈ − × 

438671 1
1818 18 798

3.053954330B = ≈

1746111 1
2020 20 330

26.4562(12)B −= ≈ −

...................................................... 

Proof: 

By Euler-Maclaurin Summation, 

1 1 1
1

1

..

x N

N x
x

dx

=

=

+ + − =∫
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2 4 61 1 1 1 1 1 1 1 1
1 1 12 1 2! 6 4 ! 30 6! 42

1 3! 5!1

( ) [ ] [ 3! ] [ 5! ]x N x N x N
x x xN

x x x− = − = − =−
= = == + + − + − + − +

  

8 101 1 1 5
1 18 ! 30 10! 66

7 ! 9 !

[ 7 ! ] [ 9! ] ...x N x N
x xx x− = − =−

= =+ − + − +
 

1 1 1 1 1 1 1 1 1 5
2 6 2 30 3 42 4 30 5 66
(1 ...)− −= + + + + + +
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12. 

Fast-Converging Bernoulli Series

    4 6 8 10

1 1 1 1 5
6 30 42 30 66

1 1 1
10 2 1010

1 1 1 1 1 1 1 1 1 1
2 4 6 8 102 100 4 6 8 1010 10 10 10

1 .. log10

          ...

n

B B B B B

γ

− −

=
= + + − + +

+ + + + + +

21 1 1
22 2 6

8.(3) 10B − = ≈  
2 410 8.(3) 10− − ⇒ × ≈  

31 1 1
44 4 30

8.(3) 10B −−  = ≈ −  
4 710 8.(3) 10− − ⇒ × ≈ −  

31 1 1
66 6 42

4 10B − = ≈  
6 910 4 10− − ⇒ × ≈  

31 1 1
88 8 30

4.1(6) 10B −−  = ≈ −  
8 1110 4.1(6) 10− − ⇒ × ≈ −  

31 1 5
1010 10 66

7.(57) 10B − = ≈  
10 1310 7.(57) 10− − ⇒ × =  

21 1 691
1212 12 2730

2.1 10B −−  = ≈ −  
12 1410 2.1 10− − ⇒ × ≈ −  

271 1
1414 14 6

8.(3) 10B − = ≈  
14 1610 8.(3) 10− − ⇒ × = × 

136171 1
1616 16 510

4.432 10B −−  = ≈ − × 
16 1710 4.432 10− − ⇒ × ≈ − × 

438671 1
1818 18 798

3.053954330B = ≈ 18 1810 3.05395433 10− − ⇒ × ≈  

1746111 1
2020 20 330

26.4562(12)B −= ≈ − 20 1910 2.64562(12) 10− − ⇒ × ≈  

Proof:              

1 1 1 1 1 1 1
1

1 1

log

1 .. 1 .. ..

x N x n x N

N x n x n N x
x x x n

n

dx dx dx

= = =

+
= = =

    + + − = + + − + + + −     
∫ ∫ ∫


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By Euler-Maclaurin summation 

1 1 1
1

..

x N

n N x
x n

dx

=

+
=

+ + − =∫

2 4 61

2 4 61 1 1 1 1 1 1 1 1
2 2! 6 4 ! 30 6! 42

3! 5!

( ) [ ] [ 3! ] [ 5! ]x N x N x N
x n x n x nn N

n n nn

x x x

− − −−

− = − = − =−
= = == + + − + − + − +

  

8 10

8 101 1 1 5
8 ! 30 10! 66

7 ! 9 !

[ 7 ! ] [ 9! ] ...x N x N
x n x n

n n

x x

− −

− = − =−
= =+ − + − +

 

2 4 6 8 10
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1
2 2 6 4 30 6 42 8 30 10 66

...
n n n n n n

− −= + + + + + +

1
1010

1 .. log10
n

γ
=

= + + − +

4 6 8 10
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1
2 10 2 6 100 4 30 6 42 8 30 10 6610 10 10 10

...+ + − + − + +
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13. 

Sequential Transcendence versus 

Transcendence
A number ξ  is Transcendental if it is not the root of any n  degree 

polynomial equation with rational coefficients, for any finite 

natural number n . 

This definition excludes any infinite hyper-real number N .  

Indeed,  

13.1   

The Transcendental number π  is the root of a polynomial 

equation with rational coeffic ients of degree N . 

Proof One such polynomial equation of degree N with rational 

coefficients follows from our 2022 derivation4 of an expansion for 

1, which we named The Archimedes Series for 1

2 2

6 2 5 2

3 5 7 9171 2 62
4 3 4 15 4 315 4 2835 4

(819)(691) 2 (2 1)11 13 2 15461
4 4 (2 )! 43 5 7(11)(91) 3 5 7(11)(13)

1 ( ) ( ) ( ) ( )

  ( ) + ( ) +.... ( ) ..
n n

n
nn

B

π π π π π

π π π− −

= + + + + +

+ + +

where nB =Bernoulli Numbers.

Similarly, our definition of sequential Transcendence breaks down 

for n N=

4 H. Vic Dannon, "Archimedes Series", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11 
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We defined a number ξ  to be sequentially transcendental if for 

any finite natural number n  there a transcendental number as 

close as we wish to  ξ . 

This definition excludes any infinite hyper-real number N .  

Indeed, if we allow n N= , then 

13.2 

For an Algebraic ,  and Sequentially Transcendental α , 

Nξ  must be algebraic  

For instance, for the Algebraic number 1 , the partial sum  

2 2

6 2 5 2

3 5 7 9171 2 62
4 3 4 15 4 315 4 2835 4

(819)(691) 2 (2 1)11 13 2 15461
4 4 (2 )! 43 5 7(11)(91) 3 5 7(11)(13)

1 ( ) ( ) ( ) ( )

  ( ) + ( ) +.... ( )
n n

N

n
Nn

B

π π π π π

π π π− −

= + + + + +

+ +

where nB =Bernoulli Numbers for 1,2,...n N=

is infinitesimally close to 1 , 

1 1N= + infinitesimal 
Therefore,  


algebraic

1 = {the standard part of 1} 1N=

That is,  for any finite n , 

1n =  transcendental 

But for an infinite hyper-real N

1N =algebraic 

It follows that 
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Our definitions of Transcendental, and Sequentially 

Transcendental apply only to  finite n

In any event, we cannot compute with any infinite n . 

But if we are limited to finite n , then the transcendental π  is 

actually the Leibniz rational partial sum 

11 1 ( 1)
4 1 ....

3 5 2 1

n

n n
π

+  − = − + − +  −  

that can be made as close as we can compute to π

And γ  is actually the transcendental  

1 1 1
1 ... log( 1)

2 3n n
n

γ = + + + − +

that can be made as close as we can compute to γ

In other words, since transcendence breaks down at the forever 

incomprehensible infinity 

Sequential Transcendence is  way more informative then 

Transcendence  

In 2022, we derived5 an expansion for π , which we named The 

Archimedes Series for π

2 2

6 2 5 2

3 5 7 9171 1 2 62
2 3 15 315 2835

(819)(691) 2 (2 1)11 13 2 15461
(2 )!3 5 7(11)(91) 3 5 7(11)(13)

{ (2 ) (2 ) (2 ) (2 ) (2 )

+ (2 )+ (2 )+.... (2 ) ....}
n n

n
nn

B

π α π α π α π α π α π

α π α π α π− −

= + + + + +

+ +

where (2 ) arctan(2 ) 1.412965137..α π π= ≈

5 H. Vic Dannon, "Archimedes Series", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11 
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and nB =  Bernoulli Numbers. 

The Transcendental partial sums 

2 2

6 2 5 2

3 5 7 9171 1 2 62
2 3 15 315 2835

(819)(691) 2 (2 1)11 13 2 15461
(2 )!3 5 7(11)(91) 3 5 7(11)(13)

{ (2 ) (2 ) (2 ) (2 ) (2 )

+ (2 )+ (2 )+.... (2 )}
n n

n

n
nn

B

π α π α π α π α π α π

α π α π α π− −

= + + + + +

+

represent π  better than any inapplicable statement about its not 

being a root of a polynomial equation. 

We conclude that  

Sequential Transcendence is  

a superior characterization of a number. 
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Appendix
Transcendental Numbers

Liouville         
2! 3! 4 !

1 1 1 1
....

10 10 10 10
transcendental+ + + + =

Hermit rationale transcendental=

Lindemann    algebraice transcendental=

algebraic =tanscendentaleτ τ= ⇒

1 trans trans = transie i iπ π π= − ⇒ = ⇒ = − ⋅

1 2,α α =Algebraically Dependent over 

iff 1 2( , ) 0P α α =  where ( , )P x y has coefficients from 

,π π =  algebraically dependent over  with 2( , )P x y x y= − . 

Lindemann-Weierstrass     

1 2 3, ,α α α =  algebraic 

1 2 3, ,β β β =  algebraic, Linearly independent over 

1 2 3
1 2 3 transcendentale e eα α αβ β β⇒ + + =

α  algebraic 0≠ ⇒ cos ,  sin ,  tanα α α =  transcendental,

α  algebraic 0,1≠ ⇒ logα =transcendental 

1 2 3, ,α α α =algebraic, linearly independent over 

1 2 2, ,e e eα α α⇒ =  algebraically independent over 
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1 2 3
1 2 3r e r e r e transcendentalα α α⇒ + + =  for any 1 2 3, ,r r r ∈ 

Baker 1 2 3α α α≠ ≠  algebraic 

1 2 3, ,e e eα α α⇒ = linearly independent over A

1 2 3
1 2 3e e e transcendentalα α αβ β β⇒ + + =  for any 1 2,β β ∈ A

Gelfond 

0,1α ≠  algebraic , β = irrational algebraic transcendentalβα⇒ =

22 , 

2
2 , 

( ) ( 1)i i ie eπ π − −= = − , 

1 1
2 2( ) ( )

i i ie e i
π π− = = . 

Gelfond-Schneider  

1 2,α α = algebraic 0,1≠

1 2,β β =  algebraic,  

1 21, ,β β = Linearly independent over 

1 2
1 2 transcendental
β βα α⇒ =

Baker

1 2α α≠  algebraic 0,1≠

1 2,β β =  irrational algebraic,  

1 21, ,β β =  linearly independent over 
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1 2
1 2 transcendental
β βα α⇒ =

Gelfond-Schneider

1 2,α α = algebraic, 0,1≠

1 2,β β =  algebraic,  

1 2log , logα α = Linearly independent over 

1 1 2 2log log transcendentalβ α β α⇒ + =

Gelfond-Schneider-Baker

1 2 3, ,α α α =  algebraic, 0,1≠

0 1 2 3, , ,β β β β =  algebraic,  

0 1 2 3, , ,β β β β = Linearly independent over 

1 2 30
1 2 3 transcendentale
β β ββ α α α⇒ =

Gelfond-Schneider-Baker

1 2 3, ,α α α =  algebraic, 0,1≠

0 1 2 30, , ,β β β β≠ =  algebraic,  

1 2 3log , log , logα α α = Linearly independent over 

0 1 1 2 2 3 3log log log transcendental β β α β α β α⇒ + + + =
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