Euler's Gamma is Irrational and Sequentially Transcendental Number

H. Vic Dannon vic0@comcast.net December 2022

Abstract A number is algebraic if it is a zero of a polynomial in integer coefficients.

The algebraic numbers form a field with respect to addition, and multiplication. The sum, and product of two algebraic numbers is an algebraic number.

A number that is not algebraic, transcends algebraic numbers, and is called transcendental. The following are believed to be transcendental

e(Hermit),

 π (Lindemann),

 $e^{
m rational}$ (Hermit),

 $e^{
m algebraic}$ (Lindemann),

 $(algebraic)^{irrational\ algebraic}$ (Gelfond-Schneider).

$$e^{\pi} = (e^{i\pi})^{-i} = (-1)^{-i}$$

$$e^{n\pi} = (e^{i\pi})^{-ni} = (-1)^{-ni}$$

Euler defined his Gamma Constant γ by the infinite sum

$$\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}\right) - \left(\log 2 + \log \frac{3}{2} + \log \frac{4}{3} + \dots + \log \frac{N+1}{N}\right) =$$

$$= (1 - \log 2) + \left(\frac{1}{2} - \log \frac{3}{2}\right) + \left(\frac{1}{3} - \log \frac{4}{3}\right) + \dots + \left(\frac{1}{N} - \log \frac{N+1}{N}\right)$$

And computed it with his summation formula.

$$\gamma = 0.577218....$$

Vacca expanded Gamma in infinite series of reciprocals of all the natural numbers.

The series sum has a denominator that includes the product of all the prime numbers. But there is no number that is divided by all the primes. Hence, no number for the denominator of a rational number that equals the series.

Therefore,

Euler's Gamma is Irrational.

The same argument applies to show that π , e, $\zeta(3)$, $\zeta(5)$, $\zeta(7)$, ... are Not rational numbers.

Vacca series expansion of Gamma applies to show that

Gamma is Not a Liouville number.

And we cannot say that Gamma is transcendental on account of its being a Liouville number which it is not.

We show that

Gamma is the limit of a sequence γ_n of transcendentals.

This **Does Not** mean that Gamma is transcendental But that

As far as we can ever compute, for any finite n,

the partial sum $\,\gamma_n^{}$ is a transcendental number.

Indeed, a sequence of transcendentals need not converge to a transcendental number.

In 2022, we derived¹ an expansion for 1, which we named **The**Archimedes Series for 1

$$\begin{split} 1 &= \tfrac{\pi}{4} + \tfrac{1}{3} (\tfrac{\pi}{4})^3 + \tfrac{2}{15} (\tfrac{\pi}{4})^5 + \tfrac{17}{315} (\tfrac{\pi}{4})^7 + \tfrac{62}{2835} (\tfrac{\pi}{4})^9 + \\ &+ \tfrac{(819)(691)}{3^6 5^2 7(11)(91)} (\tfrac{\pi}{4})^{11} + \tfrac{5461}{3^5 5^2 7(11)(13)} (\tfrac{\pi}{4})^{13} + \ldots + \tfrac{2^{2n}(2^{2n}-1)}{(2n)!} B_n (\tfrac{\pi}{4})^{2n-1} + \ldots \end{split}$$

where $B_n =$ Bernoulli Numbers

Since π is transcendental, the Partial Sums of the Archimedes Series for 1 are transcendental numbers that converge to the algebraic number 1

And the

Transcendental partial sums $\mathbf{1}_n$ transform to Algebraic $\mathbf{1}$

We shall say that besides being an Algebraic Number,

1 is a Sequentially Transcendental Number

That is, there is a sequence of transcendentals that converges to 1. In fact, for an infinite hyper-real N we cannot compute the algebraic partial sum with N transcendental terms.

As far as we can ever compute, for any finite n, the partial sum $\mathbf{1}_n$ is Transcendental.

Similarly, for γ

¹ H. Vic Dannon, "<u>Archimedes Series</u>", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11

As far as we can ever compute, for any finite n, the partial sum γ_n is a Transcendental number.

This leads us to discuss the meaning of Sequential Transcendence versus Transcendence.

And we conclude that

Sequential Transcendence is a superior characterization of a number.

Contents

- 1. Zeta Series for Gamma
- 2. Gamma is Irrational
- 3. Gamma is Not a Liouville Number
- 4. Gamma is Sequentially Transcendental
- 5. e^{γ} is Irrational and Sequentially Transcendental
- 6. $e^{\pi\gamma}$ is Irrational and Sequentially Transcendental
- 7. γe is Irrational and Sequentially Transcendental
- 8. $\gamma \pi$ is Irrational and Sequentially Transcendental
- 9. $\gamma + e$ is Irrational and Sequentially Transcendental
- 10. $\gamma + \pi$ is Irrational and Sequentially Transcendental
- 11. Bernoulli Series for Gamma
- 12. Fast Converging Bernoulli Series
- $13. \ Sequential \ Transcendence \ versus \ Transcendence$

Appendix, Transcendental Numbers

References

Zeta Series for Gamma

For an infinite Hyper-real N, Euler defined

$$\gamma = (1 - \log 2) + \left(\frac{1}{2} - \log \frac{3}{2}\right) + \left(\frac{1}{3} - \log \frac{4}{3}\right) + \dots + \left(\frac{1}{N} - \log \frac{N+1}{N}\right)$$

Proof: the Harmonic Series is

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{N} + \frac{1}{N+1} + \dots$$

Euler defined s(N) by

$$ds(N) = \frac{1}{N+1}dN.$$

$$s(N) = \gamma + \log(1+N)$$

$$= 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$

$$\gamma = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N} - \log(1+N)$$

$$= \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}\right) - \left(\log 2 + \log \frac{3}{2} + \log \frac{4}{3} + \dots + \log \frac{N+1}{N}\right)$$

$$= (1 - \log 2) + \left(\frac{1}{2} - \log \frac{3}{2}\right) + \left(\frac{1}{3} - \log \frac{4}{3}\right) + \dots + \left(\frac{1}{N} - \log \frac{N+1}{N}\right). \square$$

From this γ can be expanded in zeta series

$$\gamma = \frac{1}{2}\zeta(2) - \frac{1}{3}\zeta(3) + \frac{1}{4}\zeta(4) - \frac{1}{5}\zeta(5) + \dots = 0.577218\dots$$

 $\zeta(2) = 1.6449340668482264364...$

 $\zeta(3) = 1.2020569031595942853...$

 $\zeta(4) = 1.0823232337111381915...$

 $\zeta(5) = 1.0369277551433699263...$

 $\zeta(6) = 1.0173430619844491397...$

 $\zeta(7) = 1.0083492773819228268...$

 $\zeta(8) = 1.0040773561979443393...$

 $\zeta(9) = 1.0020083928260822144...$

 $\zeta(10) = 1.0009945751278180853...$

 $\zeta(11) = 1.0004941886041194645...$

 $\zeta(12) = 1.0002460865533080482...$

 $\zeta(13) = 1.0001227133475784891...$

 $\zeta(14) = 1.0000612481350587048...$

 $\zeta(15) = 1.0000305882363070204...$

 $\zeta(16) = 1.0000152822594086518...$

.....

Proof:

$$\log\left(1+\frac{1}{1}\right) = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$$

$$\Rightarrow \left[1 - \log 2 = \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} - \dots\right]$$

$$\log\left(1+\frac{1}{2}\right) = \frac{1}{2} - \frac{1}{2}\frac{1}{2^{2}} + \frac{1}{3}\frac{1}{2^{3}} - \frac{1}{4}\frac{1}{2^{4}} + \frac{1}{5}\frac{1}{2^{5}} - \dots$$

$$\Rightarrow \frac{1}{2} - \log\frac{3}{2} = \frac{1}{2}\frac{1}{2^{2}} - \frac{1}{3}\frac{1}{2^{3}} + \frac{1}{4}\frac{1}{2^{4}} - \frac{1}{5}\frac{1}{2^{5}} + \dots$$

$$\log\left(1+\frac{1}{3}\right) = \frac{1}{3} - \frac{1}{2}\frac{1}{3^2} + \frac{1}{3}\frac{1}{3^3} - \frac{1}{4}\frac{1}{3^4} + \frac{1}{5}\frac{1}{3^5} - \dots$$

$$\Rightarrow \frac{1}{3} - \log\frac{4}{3} = \frac{1}{2}\frac{1}{3^2} - \frac{1}{3}\frac{1}{3^3} + \frac{1}{4}\frac{1}{3^4} - \frac{1}{5}\frac{1}{3^5} + \dots$$

$$\log\left(1+\frac{1}{4}\right) = \frac{1}{4} - \frac{1}{2}\frac{1}{4^2} + \frac{1}{3}\frac{1}{4^3} - \frac{1}{4}\frac{1}{4^4} + \frac{1}{5}\frac{1}{4^5} - \dots$$

$$\Rightarrow \frac{1}{4} - \log\frac{5}{4} = \frac{1}{2}\frac{1}{4^2} - \frac{1}{3}\frac{1}{4^3} + \frac{1}{4}\frac{1}{4^4} - \frac{1}{5}\frac{1}{4^5} + \dots$$

••••••

$$\log\left(1+\frac{1}{N}\right) = \frac{1}{N} - \frac{1}{2}\frac{1}{N^2} + \frac{1}{3}\frac{1}{N^3} - \frac{1}{4}\frac{1}{N^4} + \frac{1}{5}\frac{1}{N^5} - \dots$$

$$\Rightarrow \frac{1}{N} - \log\frac{N+1}{N} = \frac{1}{2}\frac{1}{N^2} - \frac{1}{3}\frac{1}{N^3} + \frac{1}{4}\frac{1}{N^4} - \frac{1}{5}\frac{1}{N^5} + \dots$$

$$\gamma = \left(1 - \log 2\right) + \left(\frac{1}{2} - \log\frac{3}{2}\right) + \left(\frac{1}{3} - \log\frac{4}{3}\right) + \dots + \left(\frac{1}{N} - \log\frac{N+1}{N}\right)$$

$$= \frac{1}{2}\left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{m^2} + \dots + \frac{1}{N^2}\right)$$

$$\zeta(2)$$

$$-\frac{1}{3}\left(1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{m^3} + \dots + \frac{1}{N^3}\right)$$

$$+\frac{1}{4} \underbrace{\left(1 + \frac{1}{2^4} + \frac{1}{3^4} + \ldots + \frac{1}{m^4} + \ldots + \frac{1}{N^4}\right)}_{\zeta(4)}$$

••••••

γ is Irrational

Vacca Series² for γ

$$\gamma = 1 \left(\frac{1}{2} - \frac{1}{3} \right)$$

$$+ 2 \left(\frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \frac{1}{7} \right)$$

$$+ 3 \left(\frac{1}{8} - \frac{1}{9} + \frac{1}{10} - \frac{1}{11} + \frac{1}{12} - \frac{1}{13} + \frac{1}{14} - \frac{1}{15} \right)$$

$$+ m \left(\frac{1}{2^m} - \frac{1}{2^m + 1} + \dots + \frac{1}{2^{m+1} - 2} - \frac{1}{2^{m+1} - 1} \right)$$

γ is Irrational

Proof:

$$\gamma = 1 \frac{1}{2 \cdot 3} + 2 \left(\frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7} \right) + 3 \left(\frac{1}{8 \cdot 9} + \frac{1}{10 \cdot 11} + \frac{1}{12 \cdot 13} + \frac{1}{14 \cdot 15} \right) + m \left(\frac{1}{2^{m} (2^{m} + 1)} + \dots + \frac{1}{(2^{m+1} - 2)(2^{m+1} - 1)} \right) + \dots$$

² Steven R. Finch, "Mathematical Constants", Cambridge U Press, 2003, p.31

$$\gamma = 0.57721 \ 56649 \ 01532 \dots$$

is the sum of infinitely many rational numbers with common denominator that is the product of all the natural numbers,

$$2 \cdot 3 \cdot 4 \cdot \dots = N!$$

which includes the product of all the prime numbers

$$p_1 \cdot p_2 \cdot p_3 \cdot \dots$$

There is no finite natural number

q

that is divided by all the primes.

Thus, there is no rational number $\frac{p}{q}$ that equals Gamma.

Therefore, Gamma is Not a rational number.

That is, Gamma is Irrational.□

γ is Not a Liouville Number

Liouville showed that

<u>If</u>

 $\alpha=$ the zero of a reduced polynomial

$$P_n(x)$$
 of order n ,

and if α is the limit of a sequence of rational numbers,

$$\frac{p_m}{q_m}$$

so that

 $\boldsymbol{p}_{m},$ and \boldsymbol{q}_{m} are relatively prime,

And if there is a constant $C_m > 0$ so that

$$q_m > C_m$$

Then,

$$\left| \alpha - \frac{p_m}{q_m} \right| > \left(\frac{1}{q_m} \right)^{n+1}$$

The negation of this statement is a criteria for transcendence.

If

 $\tau = \text{limit of a sequence of rational numbers},$

 $\frac{p_m}{q_m},$ so that $p_m,$ and q_m are relatively prime,

and if for each m = 1, 2, 3, ...,

$$\left| \tau - \frac{p_m}{q_m} \right| < \left(\frac{1}{q_m} \right)^{m+1}$$

Then,

 $\tau = transcendental$.

The partial sums of the Vacca Series are such rationals

$$\begin{split} \frac{p_m}{q_m} &= 1\frac{1}{2\cdot 3} \\ &+ 2\bigg(\frac{1}{4\cdot 5} + \frac{1}{6\cdot 7}\bigg) \\ &+ 3\bigg(\frac{1}{8\cdot 9} + \frac{1}{10\cdot 11} + \frac{1}{12\cdot 13} + \frac{1}{14\cdot 15}\bigg) \\ &+ m\bigg(\frac{1}{2^m(2^m+1)} + \dots + \frac{1}{(2^{m+1}-2)(2^{m+1}-1)}\bigg) \\ &\qquad \qquad \frac{1}{q_m} = \frac{1}{(2^{m+1}-1)!} \\ & \left|\gamma - \frac{p_m}{q_m}\right| = (m+1)\big(\frac{1}{2^{m+1}(2^{m+1}+1)} + \dots + \frac{1}{(2^{m+2}-2)(2^{m+2}-1)}\big) + \dots \end{split}$$

is not bounded by

$$\left(\frac{1}{q_m}\right)^{m+1} = \left(\frac{1}{(2^{m+1}-1)!}\right)^{m+1}$$
 for all $m = 1, 2, 3, ...$

Therefore, γ is not a Liouville Number.

γ is Sequentially Transcendental

For n = 1, 2, 3, 4...

$$\gamma_n \equiv 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \log(n+1) = \text{transcendental}$$

Proof:

$$\gamma_n \equiv \underbrace{1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}}_{\text{rational}} + \underbrace{\log \frac{1}{n+1}}_{\text{transcendental}}$$

By Lindemann, $e^{\tau} = \text{algebraic} \Rightarrow \tau = \text{transcendental}$ Therefore,

$$e^{\log \frac{1}{N+1}} = \frac{1}{N+1} =$$
algebraic $\Rightarrow \log \frac{1}{N+1} =$ transcendental

Therefore,

$$\gamma_n - \frac{p_n}{n!} =$$
transcendental.

If $\gamma_n = \text{algebraic}$, then by the field property of algebraic numbers,

$$\gamma_n - \frac{p_n}{n!} =$$
algebraic.

From that contradiction, it follows that $\gamma_n=$ transcendental. \square For the infinite hyper-real number N ,

$$\gamma_N = (1-\log 2) + \left(\frac{1}{2} - \log \frac{3}{2}\right) + \ldots + \left(\frac{1}{N} - \log \frac{N+1}{N}\right).$$

$$\begin{split} \gamma_{N+1} &= (1 - \log 2) + \ldots + \left(\frac{1}{N} - \log \frac{N+1}{N}\right) + \left(\frac{1}{N+1} - \log \frac{N+2}{N+1}\right) \\ \gamma_{N+1} - \gamma_N &= \frac{1}{N+1} - \log \frac{N+2}{N+1} \\ &= \frac{1}{N+1} - \log \left(1 + \frac{1}{N+1}\right) \\ &= \frac{1}{N+1} - \left(\frac{1}{N+1} - \frac{1}{2} (\frac{1}{N+1})^2 + \frac{1}{3} (\frac{1}{N+1})^3 - \ldots\right) \\ &= \frac{1}{2} (\frac{1}{N+1})^2 - \frac{1}{3} (\frac{1}{N+1})^3 + \frac{1}{4} (\frac{1}{N+1})^4 - \ldots \\ &= \text{Order of } (\frac{1}{N+1})^2 \end{split}$$

That is, γ_N is infinitesimally close to γ .

Gamma is the limit of a sequence γ_n of transcendentals.

This **Does Not** mean that Gamma is transcendental But that

As far as we can ever compute, for any finite n the approximation γ_n is transcendental.

Indeed, a sequence of transcendentals need not converge to a transcendental number.

In 2022, we derived³ an expansion for 1, which we named **The**Archimedes Series for 1

³ H. Vic Dannon, "<u>Archimedes Series</u>", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11

$$\begin{split} 1 &= \frac{\pi}{4} + \frac{1}{3} \left(\frac{\pi}{4}\right)^3 + \frac{2}{15} \left(\frac{\pi}{4}\right)^5 + \frac{17}{315} \left(\frac{\pi}{4}\right)^7 + \frac{62}{2835} \left(\frac{\pi}{4}\right)^9 + \\ &+ \frac{(819)(691)}{3^6 5^2 7(11)(91)} \left(\frac{\pi}{4}\right)^{11} + \frac{5461}{3^5 5^2 7(11)(13)} \left(\frac{\pi}{4}\right)^{13} + \ldots + \frac{2^{2n} (2^{2n} - 1)}{(2n)!} B_n \left(\frac{\pi}{4}\right)^{2n - 1} + \ldots \end{split}$$

where $B_n =$ Bernoulli Numbers

Since π is transcendental, the Partial Sums of the Archimedes Series for 1 are transcendental numbers that converge to the algebraic number 1

And the

Transcendental partial sums 1_n transform to Algebraic 1

We shall say that besides being an Algebraic Number,

1 is a Sequentially Transcendental Number

That is, there is a sequence of transcendental numbers that converges to 1.

In fact, for an infinite hyper-real N we cannot compute the algebraic partial sum with N transcendental terms.

As far as we can ever compute, for any finite n, the partial sum $\mathbf{1}_n$ is a Transcendental number.

We conclude that

 γ is Sequentially Transcendental Number Meaning that,

As far as we can ever compute, for any finite n, the partial sum γ_n is a transcendental number.

e^{γ} is Irrational and Sequentially

Transcendental Number

Irrationality

Using Vacca expansion for γ

$$e^{\gamma} = \frac{1}{0!} + \frac{1}{1!} \left(1 \frac{1}{2 \cdot 3} + 2 \left(\frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7} \right) + 3 \left(\frac{1}{8 \cdot 9} + \frac{1}{10 \cdot 11} + \frac{1}{12 \cdot 13} + \frac{1}{14 \cdot 15} \right) + \dots \right) + \frac{1}{2!} \left(1 \frac{1}{2 \cdot 3} + 2 \left(\frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7} \right) + 3 \left(\frac{1}{8 \cdot 9} + \frac{1}{10 \cdot 11} + \frac{1}{12 \cdot 13} + \frac{1}{14 \cdot 15} \right) \right)^{2} + \dots$$

is the sum of infinitely many rational numbers with common denominator that includes the product of all the prime numbers

$$p_1 \cdot p_2 \cdot p_3 \cdot \dots$$

There is no finite natural number

q

that is divided by all the primes.

Thus, there is no rational number $\frac{p}{q}$ that equals e^{γ}

Therefore, e^{γ} is Not a rational number.

That is, e^{γ} is Irrational.

Sequentially Transcendental

For
$$n = 1, 2, 3, ..., N$$
, $e^{\gamma_n} = \text{Transcendental}$

Proof:

$$e^{\gamma_n} = e^{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}} e^{-\log 2 - \log \frac{3}{2} - \log \frac{4}{3} - \dots - \log \frac{n+1}{n}}$$

By Hermit, $e^{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}}=e^{\text{rational}}=\text{transcendental}$

$$e^{\gamma_n} = (\text{transcendental}) e^{\log \frac{1}{2} e^{\log \frac{2}{3}} e^{\log \frac{3}{4}} \dots e^{\log \frac{n}{n+1}}}$$
$$= (\text{transcendental}) \underbrace{\frac{1}{2} \underbrace{\frac{2}{3}}_{4} \dots \frac{n-1}{\cancel{n}} \underbrace{\frac{1}{n+1}}_{\text{algebraic}}}_{\frac{1}{n+1} = \text{algebraic}}$$

Therefore,

$$(n+1)e^{\gamma_n}$$
 =transcendental.

If $e^{\gamma_n}=$ algebraic, then by the field property of algebraic numbers, $(n+1)e^{\gamma_n}=$ algebraic.

From that contradiction it follows that $e^{\gamma_n} = \text{transcendental.} \square$

This holds for any $n = 1, 2, 3, 4, \dots$,

Consequently,

$$e^{\gamma} = \text{Sequentially Transcendental}$$

$e^{\pi\gamma}$ is Irrational and Sequentially

Transcendental Number

Irrationality

Using Vacca expansion for γ , and Leibniz expansion for π

$$\begin{split} e^{\gamma\pi} &= \frac{1}{0!} + \\ &+ \frac{1}{1!} \left(1 \frac{1}{2 \cdot 3} + 2 \left(\frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7} \right) + \dots \right) 4 \left(1 - \frac{1}{3} + \frac{1}{5} - \dots \right) \\ &+ \frac{1}{2!} \left(1 \frac{1}{2 \cdot 3} + 2 \left(\frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7} \right) + \dots \right)^2 4^2 \left(1 - \frac{1}{3} + \frac{1}{5} - \dots \right)^2 + \dots \end{split}$$

is the sum of infinitely many rational numbers with common denominator that includes the product of all the prime numbers

$$p_1 \cdot p_2 \cdot p_3 \cdot \dots$$

There is no finite natural number

q

that is divided by all the primes.

Thus, there is no rational number $\frac{p}{q}$ that equals $e^{\gamma\pi}$

Therefore, $e^{\gamma\pi}$ is Not a rational number.

That is, $e^{\gamma\pi}$ is Irrational. \square

Sequentially Transcendental

For
$$n = 1, 2, 3, ..., N$$
, $e^{\pi_n \gamma_n} = \text{transcendental}$

Proof:

$$e^{\gamma_n \pi_n} = \underbrace{e^{\frac{\left[1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right] 4 \left[1 - \frac{1}{3} + \dots + \frac{(-1)^{n-1}}{2n-1}\right]}}_{Transcendental} \times e^{\left[-\log 2 - \log \frac{3}{2} - \log \frac{4}{3} - \dots - \log \frac{n+1}{n}\right] 4 \left[1 - \frac{1}{3} + \dots + \frac{(-1)^{n-1}}{2n-1}\right]} \times e^{\left[-\log 2 - \log \frac{3}{2} - \log \frac{4}{3} - \dots - \log \frac{n+1}{n}\right] 4 \left[1 - \frac{1}{3} + \dots + \frac{(-1)^{n-1}}{2n-1}\right]} = (\operatorname{transcendental}) \left(\underbrace{\frac{\log \frac{1}{2}}{2}}_{n+1}\right)^{4 \left[1 - \frac{1}{3} + \dots + \frac{(-1)^{n-1}}{2n-1}\right]} = (\operatorname{transcendental}) \left(\underbrace{\frac{1}{n+1}}_{n+1}\right)^{4 \left[1 - \frac{1}{3} + \dots + \frac{(-1)^{n-1}}{2n-1}\right]}$$

Therefore,

$$\underbrace{(n+1)^{4\left(1-\frac{1}{3}+\ldots+\frac{(-1)^{n-1}}{2n-1}\right)}}_{\text{Algebraic}}e^{\pi_n\gamma_n} = \text{transcendental}.$$

If $e^{\pi_n \gamma_n} =$ algebraic, then by the field property of algebraic

numbers,
$$\underbrace{(n+1)^{4\left(1-\frac{1}{3}+\ldots+\frac{(-1)^{n-1}}{2n-1}\right)}}_{\text{Algebraic}}e^{\pi_n\gamma_n}=$$
algebraic.

From that contradiction, it follows that $e^{\pi_n \gamma_n} = \text{transcendental.} \square$ This holds for any n = 1, 2, 3, 4, ...,

Consequently,

$$e^{\pi\gamma}$$
 = Sequentially Transcendental

γe is Irrational and Sequentially

Transcendental Number

Irrationality

Using Vacca expansion for γ , and Euler's expansion for e

$$\gamma e = \left(1 \frac{1}{2 \cdot 3} + 2\left(\frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7}\right) + \dots\right) \left(\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots\right)$$

is the sum of infinitely many rational numbers with common denominator that includes the product of all the prime numbers

$$p_1 \cdot p_2 \cdot p_3 \cdot \dots$$

There is no finite natural number

q

that is divided by all the primes.

Thus, there is no rational number $\frac{p}{q}$ that equals $e^{\gamma\pi}$

Therefore, $e^{\gamma\pi}$ is Not a rational number.

That is, $e^{\gamma\pi}$ is Irrational.

Sequentially Transcendental

For
$$n = 1, 2, 3, ..., N$$
, $\gamma_n e_n = \text{transcendental}$

Proof:

$$\gamma_n e_n = (\text{transcendental}) (\underbrace{1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \ldots + \frac{1}{n!}}_{\text{rational algebraic}})$$

Therefore,

$$\frac{\gamma_n e_n}{\text{algebraic}} =$$
transcendental.

If $\gamma_n e_n = \text{algebraic}$, then by the field property of algebraic numbers, $\frac{\gamma_n e_n}{\text{algebraic}} = \frac{\text{algebraic}}{\text{algebraic}} = \text{algebraic}$.

From that contradiction, it follows that $\gamma_n e_n=$ transcendental. \square This holds for any n=1,2,3,4,..., including the hyper-real number N. Consequently,

 $\gamma e = \text{Sequentially Transcendental Number}$

$\gamma\pi$ is Irrational and Sequentially

Transcendental Number

Irrationality

Using Vacca expansion for γ , and Leibniz expansion for π

$$\gamma \pi = \left(1 \frac{1}{2 \cdot 3} + 2 \left(\frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7}\right) + \dots\right) 4 \left(1 - \frac{1}{3} + \frac{1}{5} - \dots\right)$$

is the sum of infinitely many rational numbers with common denominator that includes the product of all the prime numbers

$$p_1 \cdot p_2 \cdot p_3 \cdot \dots$$

There is no finite natural number

q

that is divided by all the primes.

Thus, there is no rational number $\frac{p}{q}$ that equals $\gamma\pi$

Therefore, $\gamma \pi$ is Not a rational number.

That is, $\gamma \pi$ is Irrational.

Sequentially Transcendental

For
$$n = 1, 2, 3, ..., N$$
, $\gamma_n \pi_n = \text{transcendental}$

Proof:

$$\gamma_n \pi_n = (\text{transcendental}) \underbrace{4 \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots + \frac{(-1)^{n+1}}{2n-1}\right)}_{\text{algebraic}}$$

Therefore, $\frac{\gamma_n \pi_n}{\text{algebraic}} = \text{transcendental}.$

If $\gamma_n\pi_n=$ algebraic, then by the field property of algebraic numbers, $\frac{\gamma_n\pi_n}{\text{algebraic}}=$ algebraic.

From that contradiction, it follows that $\gamma_n\pi_n=$ transcendental. \square This holds for any n=1,2,3,4,..., Consequently,

 $\gamma \pi =$ Sequentially Transcendental Number

$\gamma + e$ is Irrational and

Sequentially Transcendental

Number

Irrationality

Using Vacca expansion for γ , and Euler's expansion for e

$$\gamma + e = \left(1\frac{1}{2 \cdot 3} + 2\left(\frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7}\right) + \ldots\right) + \left(\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots\right)$$

is the sum of infinitely many rational numbers with common denominator that includes the product of all the prime numbers

$$p_1 \cdot p_2 \cdot p_3 \cdot \dots$$

There is no finite natural number

q

that is divided by all the primes.

Thus, there is no rational number $\frac{p}{q}$ that equals $\gamma + e$

Therefore, $\gamma + e$ is Not a rational number.

That is, $\gamma + e$ is Irrational.

Sequentially Transcendental

For
$$n=1,2,3,...,N$$
 , $\boxed{\gamma_n+e_n=\text{transcendental}}$

Proof:

$$\gamma_n + e_n = (\text{transcendental}) + (\underbrace{1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}})$$

Therefore,

$$\gamma_n + e_n - \text{algebraic} = \text{transcendental}.$$

If $\gamma_n+e_n=$ algebraic, then by the field property of algebraic numbers, γ_n+e_n- algebraic = algebraic.

From the contradiction, it follows that $\gamma_n+e_n=$ transcendental. \square This holds for any n=1,2,3,4,...,

Consequently,

$$\gamma + e =$$
 Sequentially Transcendental Number

$\gamma + \pi$ is Irrational and

Sequentially Transcendental

Number

Irrationality

Using Vacca expansion for γ , and Leibniz expansion for π

$$\gamma + \pi = \left(1\frac{1}{2 \cdot 3} + 2\left(\frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7}\right) + \ldots\right) + 4\left(1 - \frac{1}{3} + \frac{1}{5} - \ldots\right)$$

is the sum of infinitely many rational numbers with common denominator that includes the product of all the prime numbers

$$p_1 \cdot p_2 \cdot p_3 \cdot \dots$$

There is no finite natural number

q

that is divided by all the primes.

Thus, there is no rational number $\frac{p}{q}$ that equals $\gamma+\pi$

Therefore, $\gamma + \pi$ is Not a rational number.

That is, $\gamma + \pi$ is Irrational.

Sequentially Transcendental

For
$$n=1,2,3,...,N$$
 , $\boxed{\gamma_n+\pi_n = \text{transcendental}}$

Proof:

$$\gamma_n + \pi_n = (\text{transcendental}) + \underbrace{4 \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{(-1)^{n+1}}{2n-1}\right)}_{\text{algebraic}}$$

Therefore, $\gamma_n + \pi_n - \text{algebraic} = \text{transcendental}.$

If $\gamma_n+\pi_n=$ algebraic, then by the field property of algebraic numbers, $\gamma_n+\pi_n-$ algebraic = algebraic.

From the contradiction, it follows that $\gamma_n + \pi_n = \text{transcendental.} \, \square$

This holds for any n = 1, 2, 3, 4, ...,

Consequently,

 $\gamma + \pi = \text{Sequentially Transcendental Number}$

Bernoulli Series for γ

$$\gamma = \frac{1}{2}B_2 + \frac{1}{4}B_4 + \frac{1}{6}B_6 + \frac{1}{8}B_8 + \frac{1}{10}B_{10} + \frac{1}{12}B_{12} + \frac{1}{14}B_{14} + \frac{1}{16}B_{16} + \dots$$

The Bernoulli Numbers are all rational numbers:

$$\frac{1}{2}B_2 = \frac{1}{2}\frac{1}{6} \approx \left[8.(3)\right]10^{-2}$$

$$\frac{1}{4}B_4 = \frac{1}{4}\frac{-1}{30} \approx -\left[8.(3)\right]10^{-3}$$

$$\frac{1}{6}B_6 = \frac{1}{6}\frac{1}{42} \approx \left[4\right]10^{-3}$$

$$\frac{1}{8}B_8 = \frac{1}{8}\frac{-1}{30} \approx -\left[4.1(6)\right]10^{-3}$$

$$\frac{1}{10}B_{10} = \frac{1}{10}\frac{5}{66} \approx \left[7.(57)\right]10^{-3}$$

$$\frac{1}{12}B_{12} = \frac{1}{12}\frac{-691}{2730} \approx -\left[2.1\right]10^{-2}$$

$$\frac{1}{14}B_{14} = \frac{1}{16}\frac{7}{14}\approx \left[8.(3)\right]10^{-2}$$

$$\frac{1}{16}B_{16} = \frac{1}{16}\frac{-3617}{510} \approx -\left[4.432\right] \times 10^{-1}$$

$$\frac{1}{18}B_{18} = \frac{1}{18}\frac{43867}{798} \approx 3.053954330$$

$$\frac{1}{20}B_{20} = \frac{1}{20}\frac{-174611}{330} \approx -26.4562(12)$$

Proof:

By Euler-Maclaurin Summation,

$$\frac{1}{1} + \dots + \frac{1}{N} - \int_{x=1}^{x=N} \frac{1}{x} dx =$$

$$= \frac{1}{2} \underbrace{\left(\frac{1}{1} + \frac{1}{N}\right)}_{1} + \frac{1}{2!} \frac{1}{6} \underbrace{\left[-x^{-2}\right]_{x=1}^{x=N}}_{1} + \frac{1}{4!} \frac{-1}{30} \underbrace{\left[-3! x^{-4}\right]_{x=1}^{x=N}}_{3!} + \frac{1}{6!} \frac{1}{42} \underbrace{\left[-5! x^{-6}\right]_{x=1}^{x=N}}_{5!} + \frac{1}{8!} \frac{-1}{30} \underbrace{\left[-7! x^{-8}\right]_{x=1}^{x=N}}_{x=1} + \frac{1}{10!} \frac{5}{66} \underbrace{\left[-9! x^{-10}\right]_{x=1}^{x=N}}_{9!} + \dots$$

$$= \frac{1}{2} \left(1 + \frac{1}{6} + \frac{1}{2} \frac{-1}{30} + \frac{1}{3} \frac{1}{42} + \frac{1}{4} \frac{-1}{30} + \frac{1}{5} \frac{5}{66} + \dots\right)$$

Fast-Converging Bernoulli Series

$$\begin{split} \gamma\big|_{n=10} &= 1 + \ldots + \frac{1}{10} - \log 10 + \frac{1}{2}\frac{1}{10} + \\ &+ \frac{1}{2}\underbrace{B_2}_{100} + \frac{1}{4}\underbrace{B_4}_{10^4} + \frac{1}{6}\underbrace{B_6}_{10^6} + \frac{1}{8}\underbrace{B_8}_{10^8} + \frac{1}{10}\underbrace{B_{10}}_{10^{10}} + \ldots \\ &+ \frac{1}{2}\underbrace{B_2}_{10^8} + \frac{1}{4}\underbrace{B_4}_{10^4} + \frac{1}{6}\underbrace{B_6}_{10^6} + \frac{1}{8}\underbrace{B_8}_{10^8} + \frac{1}{10}\underbrace{B_{10}}_{10^{10}} + \ldots \\ &\frac{1}{2}B_2 = \frac{1}{2}\frac{1}{6} \approx \left[8.(3)\right]10^{-2} \quad \Rightarrow \times 10^{-2} \approx \left[8.(3)\right]10^{-4} \\ &\frac{1}{4}B_4 = \frac{1}{4}\frac{-1}{30} \approx -\left[8.(3)\right]10^{-3} \quad \Rightarrow \times 10^{-4} \approx -\left[8.(3)\right]10^{-7} \\ &\frac{1}{6}B_6 = \frac{1}{6}\frac{1}{42} \approx \left[4\right]10^{-3} \quad \Rightarrow \times 10^{-6} \approx \left[4\right]10^{-9} \\ &\frac{1}{8}B_8 = \frac{1}{8}\frac{-1}{30} \approx -\left[4.1(6)\right]10^{-3} \quad \Rightarrow \times 10^{-8} \approx -\left[4.1(6)\right]10^{-11} \\ &\frac{1}{10}B_{10} = \frac{1}{10}\frac{5}{66} \approx \left[7.(57)\right]10^{-3} \quad \Rightarrow \times 10^{-10} = \left[7.(57)\right]10^{-13} \\ &\frac{1}{12}B_{12} = \frac{1}{12}\frac{-601}{2730} \approx -\left[2.1\right]10^{-2} \Rightarrow \times 10^{-12} \approx -\left[2.1\right]10^{-14} \\ &\frac{1}{14}B_{14} = \frac{1}{14}\frac{7}{6} \approx \left[8.(3)\right]10^{-2} \quad \Rightarrow \times 10^{-14} = \left[8.(3)\right] \times 10^{-16} \\ &\frac{1}{16}B_{16} = \frac{1}{16}\frac{-3617}{510} \approx -\left[4.432\right] \times 10^{-1} \Rightarrow \times 10^{-16} \approx -\left[4.432\right] \times 10^{-17} \\ &\frac{1}{18}B_{18} = \frac{1}{18}\frac{43867}{798} \approx 3.053954330 \quad \Rightarrow \times 10^{-18} \approx \left[3.05395433\right]10^{-18} \\ &\frac{1}{20}B_{20} = \frac{1}{20}\frac{-174611}{330} \approx -26.4562(12) \quad \Rightarrow \times 10^{-20} \approx \left[2.64562(12)\right]10^{-19} \end{split}$$

Proof:

$$1 + \dots + \frac{1}{N} - \int_{x=1}^{x=N} \frac{1}{x} dx = 1 + \dots + \frac{1}{n} - \int_{\underbrace{x=1}}^{x=n} \frac{1}{x} dx + \left\{ \frac{1}{n+1} + \dots + \frac{1}{N} - \int_{x=n}^{x=N} \frac{1}{x} dx \right\}$$

By Euler-Maclaurin summation

$$\begin{split} \frac{1}{n+1} + \ldots + \frac{1}{N} - \int\limits_{x=n}^{x=N} \frac{1}{x} dx &= \\ &= \frac{1}{2} \underbrace{\left(\frac{1}{n} + \frac{1}{N}\right)}_{n^{-1}} + \frac{1}{2!} \frac{1}{6} \underbrace{\left[-x^{-2}\right]_{x=n}^{x=N}}_{x=n} + \frac{1}{4!} \frac{-1}{30} \underbrace{\left[-3! x^{-4}\right]_{x=n}^{x=N}}_{3! n^{-4}} + \frac{1}{6!} \frac{1}{42} \underbrace{\left[-5! x^{-6}\right]_{x=n}^{x=N}}_{5! n^{-6}} + \\ &\quad + \frac{1}{8!} \frac{-1}{30} \underbrace{\left[-7! x^{-8}\right]_{x=n}^{x=N}}_{n^{-2}} + \frac{1}{10!} \frac{5}{66} \underbrace{\left[-9! x^{-10}\right]_{x=n}^{x=N}}_{9! n^{-10}} + \ldots \\ &\quad = \frac{1}{2} \frac{1}{n} + \frac{1}{2} \frac{1}{6} \frac{1}{n^2} + \frac{1}{4} \frac{-1}{30} \frac{1}{n^4} + \frac{1}{6} \frac{1}{42} \frac{1}{n^6} + \frac{1}{8} \frac{-1}{30} \frac{1}{n^8} + \frac{1}{10} \frac{5}{66} \frac{1}{n^{10}} + \ldots \\ &\gamma \Big|_{n=10} = 1 + \ldots + \frac{1}{10} - \log 10 + \\ &\quad + \frac{1}{2} \frac{1}{10} + \frac{1}{2} \frac{1}{6} \frac{1}{100} - \frac{1}{4} \frac{1}{30} \frac{1}{10^4} + \frac{1}{6} \frac{1}{42} \frac{1}{10^6} - \frac{1}{8} \frac{1}{30} \frac{1}{10^8} + \frac{1}{10} \frac{5}{66} \frac{1}{10^{10}} + \ldots \end{split}$$

Sequential Transcendence versus

Transcendence

A number ξ is Transcendental if it is not the root of any n degree polynomial equation with rational coefficients, for any finite natural number n.

This definition excludes any infinite hyper-real number N. Indeed,

13.1

The Transcendental number π is the root of a polynomial equation with rational coefficients of degree N.

Proof One such polynomial equation of degree N with rational coefficients follows from our 2022 derivation⁴ of an expansion for 1, which we named **The Archimedes Series for 1**

$$1 = \frac{\pi}{4} + \frac{1}{3} \left(\frac{\pi}{4}\right)^3 + \frac{2}{15} \left(\frac{\pi}{4}\right)^5 + \frac{17}{315} \left(\frac{\pi}{4}\right)^7 + \frac{62}{2835} \left(\frac{\pi}{4}\right)^9 + \frac{(819)(691)}{3^6 5^2 7(11)(91)} \left(\frac{\pi}{4}\right)^{11} + \frac{5461}{3^5 5^2 7(11)(13)} \left(\frac{\pi}{4}\right)^{13} + \dots + \frac{2^{2n}(2^{2n}-1)}{(2n)!} B_n \left(\frac{\pi}{4}\right)^{2n-1} + \dots$$

where $B_n = \text{Bernoulli Numbers.} \square$

Similarly, our definition of sequential Transcendence breaks down for n=N

⁴ H. Vic Dannon, "Archimedes Series", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11

We defined a number ξ to be sequentially transcendental if for any finite natural number n there a transcendental number as close as we wish to ξ .

This definition excludes any infinite hyper-real number N. Indeed, if we allow n=N, then

13.2

For an Algebraic, and Sequentially Transcendental α , $\xi_{\scriptscriptstyle N}$ must be algebraic

For instance, for the Algebraic number 1, the partial sum

$$\begin{split} \mathbf{1}_N &= \tfrac{\pi}{4} + \tfrac{1}{3} \big(\tfrac{\pi}{4} \big)^3 + \tfrac{2}{15} \big(\tfrac{\pi}{4} \big)^5 + \tfrac{17}{315} \big(\tfrac{\pi}{4} \big)^7 + \tfrac{62}{2835} \big(\tfrac{\pi}{4} \big)^9 + \\ &+ \tfrac{(819)(691)}{3^6 5^2 7(11)(91)} \big(\tfrac{\pi}{4} \big)^{11} + \tfrac{5461}{3^5 5^2 7(11)(13)} \big(\tfrac{\pi}{4} \big)^{13} + \ldots + \tfrac{2^{2n}(2^{2n}-1)}{(2n)!} B_N \big(\tfrac{\pi}{4} \big)^{2n-1} \end{split}$$

where $B_n =$ Bernoulli Numbers for n = 1, 2, ...N

is infinitesimally close to 1,

$$1 = 1_N + infinitesimal$$

Therefore,

$$\mathop{\mathbb{1}}_{\mathop{}_{\!\!\!\text{algebraic}}} = \! \{ \text{the standard part of } 1 \} \! = 1_{\!N}$$

That is, for any finite n,

$$1_n = transcendental$$

But for an infinite hyper-real N

$$1_N =$$
algebraic

It follows that

Our definitions of Transcendental, and Sequentially Transcendental apply only to finite n

In any event, we cannot compute with any infinite n.

But if we are limited to finite n, then the transcendental π is actually the Leibniz rational partial sum

$$\pi_n = 4 \left\{ 1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{(-1)^{n+1}}{2n-1} \right\}$$

that can be made as close as we can compute to $\boldsymbol{\pi}$

And γ is actually the transcendental

$$\gamma_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \log(n+1)$$

that can be made as close as we can compute to γ

In other words, since transcendence breaks down at the forever incomprehensible infinity

Sequential Transcendence is way more informative then Transcendence

In 2022, we derived⁵ an expansion for π , which we named **The** Archimedes Series for π

$$\begin{split} \pi &= \tfrac{1}{2} \{\alpha(2\pi) + \tfrac{1}{3}\alpha^3(2\pi) + \tfrac{2}{15}\alpha^5(2\pi) + \tfrac{17}{315}\alpha^7(2\pi) + \tfrac{62}{2835}\alpha^9(2\pi) + \\ &+ \tfrac{(819)(691)}{3^65^27(11)(91)}\alpha^{11}(2\pi) + \tfrac{5461}{3^55^27(11)(13)}\alpha^{13}(2\pi) + \ldots + \tfrac{2^{2n}(2^{2n}-1)}{(2n)!}B_n\alpha^{2n-1}(2\pi) + \ldots \} \\ & \text{where } \alpha(2\pi) = \arctan(2\pi) \approx 1.412965137.. \end{split}$$

⁵ H. Vic Dannon, "<u>Archimedes Series</u>", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11

 ${\rm and}\, B_n = {\rm Bernoulli\ Numbers.}$

The Transcendental partial sums

$$\pi_n = \frac{1}{2} \{ \alpha(2\pi) + \frac{1}{3}\alpha^3(2\pi) + \frac{2}{15}\alpha^5(2\pi) + \frac{17}{315}\alpha^7(2\pi) + \frac{62}{2835}\alpha^9(2\pi) + \frac{1}{2835}\alpha^9(2\pi) + \frac{1}$$

$$+ \tfrac{(819)(691)}{3^{6}5^{2}7(11)(91)} \alpha^{11}(2\pi) + \tfrac{5461}{3^{5}5^{2}7(11)(13)} \alpha^{13}(2\pi) + \ldots + \tfrac{2^{2n}(2^{2n}-1)}{(2n)!} B_{n} \alpha^{2n-1}(2\pi) \}$$

represent π better than any inapplicable statement about its not being a root of a polynomial equation.

We conclude that

Sequential Transcendence is a superior characterization of a number.

<u>Appendix</u> Transcendental Numbers

$$\frac{1}{10} + \frac{1}{10^{2!}} + \frac{1}{10^{3!}} + \frac{1}{10^{4!}} + \dots = transcendental$$

Hermit

$$e^{\text{rational}} = transcendental$$

Lindemann

$$e^{\mathrm{algebraic}} = transcendental$$

$$e^{\tau} = \text{algebraic} \Rightarrow \tau = \text{tanscendental}$$

$$e^{i\pi} = -1 \Rightarrow i\pi = \text{trans} \Rightarrow \pi = -i \cdot \text{trans} = \text{trans}$$

α_1, α_2 =Algebraically Dependent over $\mathbb Q$

iff $P(\alpha_1, \alpha_2) = 0$ where P(x, y) has coefficients from \mathbb{Q}

$$\sqrt{\pi}, \pi =$$
 algebraically dependent over \mathbb{Q} with $P(x,y) = x^2 - y$.

Lindemann-Weierstrass

$$\alpha_1,\alpha_2,\alpha_3 = \text{algebraic}$$

 $\beta_1,\beta_2,\beta_3=$ algebraic, Linearly independent over $\mathbb Q$

$$\Rightarrow \beta_1 e^{\alpha_1} + \beta_2 e^{\alpha_2} + \beta_3 e^{\alpha_3} = \text{transcendental}$$

 α algebraic $\neq 0 \Rightarrow \cos \alpha$, $\sin \alpha$, $\tan \alpha =$ transcendental,

 α algebraic $\neq 0,1 \Rightarrow \log \alpha = transcendental$

 $\alpha_1,\alpha_2,\alpha_3$ =algebraic, linearly independent over $\mathbb Q$

 $\Rightarrow e^{\alpha_1}, e^{\alpha_2}, e^{\alpha_2} = \text{algebraically independent over } \mathbb{Q}$

$$\Rightarrow r_1 e^{\alpha_1} + r_2 e^{\alpha_2} + r_3 e^{\alpha_3} = transcendental \text{ for any } r_1, r_2, r_3 \in \mathbb{Q}$$

Baker $\alpha_1 \neq \alpha_2 \neq \alpha_3$ algebraic

 $\Rightarrow e^{\alpha_1}, e^{\alpha_2}, e^{\alpha_3} =$ linearly independent over A

 $\Rightarrow \beta_1 e^{\alpha_1} + \beta_2 e^{\alpha_2} + \beta_3 e^{\alpha_3} = transcendental \text{ for any } \beta_1, \beta_2 \in \mathbb{A}$

Gelfond

$$2^{\sqrt{2}}$$
, $\sqrt{2}^{\sqrt{2}}$, $e^{\pi} = (e^{i\pi})^{-i} = (-1)^{-i}$, $e^{-\frac{1}{2}\pi} = (e^{i\frac{1}{2}\pi})^i = (i)^i$.

Gelfond-Schneider

 $\alpha_1,\alpha_2 = \mathbf{algebraic} \neq 0,\!1$

 $\beta_1, \beta_2 = algebraic,$

 $1,\beta_1,\beta_2=$ Linearly independent over $\mathbb Q$

$$\Rightarrow \alpha_1^{\beta_1} \alpha_2^{\beta_2} = transcendental$$

Baker

 $\alpha_1 \neq \alpha_2$ algebraic $\neq 0,1$

 $\beta_1,\beta_2=$ irrational algebraic,

 $\mathbf{1},\beta_{\mathbf{1}},\beta_{\mathbf{2}}=$ linearly independent over \mathbb{Q}

$$\Rightarrow \alpha_1^{\beta_1} \alpha_2^{\beta_2} = transcendental$$

Gelfond-Schneider

 $\alpha_1, \alpha_2 = \text{algebraic}, \neq 0,1$

 $\beta_1, \beta_2 =$ algebraic,

 $\log \alpha_1, \log \alpha_2 = \text{Linearly independent over } \mathbb{Q}$

$$\Rightarrow \beta_1 \log \alpha_1 + \beta_2 \log \alpha_2 = transcendental$$

Gelfond-Schneider-Baker

 $\alpha_1,\alpha_2,\alpha_3=$ algebraic, $\neq 0.1$

 $\beta_0, \beta_1, \beta_2, \beta_3 =$ algebraic,

 $\beta_0,\beta_1,\beta_2,\beta_3 = \mbox{Linearly independent over } \mathbb{Q}$

$$\Rightarrow e^{\beta_0} \alpha_1^{\beta_1} \alpha_2^{\beta_2} \alpha_3^{\beta_3} = \text{transcendental}$$

Gelfond-Schneider-Baker

 $\alpha_1, \alpha_2, \alpha_3 = \text{algebraic}, \neq 0.1$

 $\beta_0 \neq 0, \beta_1, \beta_2, \beta_3 =$ algebraic,

 $\log \alpha_1, \log \alpha_2, \log \alpha_3 = \text{Linearly independent over } \mathbb{Q}$

$$\Rightarrow \beta_0 + \beta_1 \log \alpha_1 + \beta_2 \log \alpha_2 + \beta_3 \log \alpha_3 = \text{transcendental}$$

References

https://en.wikipedia.org/wiki/Euler%27s_constant

https://en.wikipedia.org/wiki/Bernoulli_number

https://en.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function

https://en.wikipedia.org/wiki/Schanuel%27s_conjecture

https://en.wikipedia.org/wiki/Baker%27s_theorem

https://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem

https://en.wikipedia.org/wiki/Transcendental_number

https://en.wikipedia.org/wiki/Transcendental_number_theory

https://en.wikipedia.org/wiki/Lindemann%E2%80%93Weierstrass_theorem

https://en.wikipedia.org/wiki/List_of_representations_of_e

https://en.wikipedia.org/wiki/List_of_formulae_involving_%CF%80

https://en.wikipedia.org/wiki/Irrational_number

https://en.wikipedia.org/wiki/Algebraic_number

https://en.wikipedia.org/wiki/Algebraic_number_field

https://en.wikipedia.org/wiki/Algebraic_number_theory

https://en.wikipedia.org/wiki/Proof that pi is irrational

https://en.wikipedia.org/wiki/Proof_that_e_is_irrational

https://en.wikipedia.org/wiki/Riemann zeta function

https://en.wikipedia.org/wiki/Diophantine_approximation

[Dan] H. Vic Dannon, "<u>Archimedes Series</u>", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11

[Euler] Leonard Euler, "De Progressionibus Harmonicus Observationes", Opera Omnia, Series 1, Volume 14, pp. 87-103.

[Goldman] Jay R. Goldman, "The Queen of Mathematics, A Historically Motivated Guide to Number Theory"

[Mckinzie] Mark Mckinzie, "Euler's Observations on Harmonic Progressions" in "Euler at 300", MAA, 2007, pp. 131-141.