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Abstract A number is algebraic if it is a zero of a polynomial in
integer coefficients.
The algebraic numbers form a field with respect to addition , and

multiplication. The sum, and product of two algebraic numbers is
an algebraic number.

A number that is not algebraic, transcends algebraic numbers,
and is called transcendental. The following are believed to be

transcendental
e(Hermit),

7 (Lindemann),
erational (prop ity
gilgebraic (Lindemann),
(algebraic)rational algebraic (Gelfond-Schneider).
" = (™) = (=1)7
e = () = (—1)™

Euler defined his Gamma Constant v by the infinite sum
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1,1 1 3 4 N+1\ _
(1 +o Tyt N) — (10g2 + 10g§ + logg +..+ logT) =

= (1—log2) + (5 —log2) + (5 — log%) ot (- log%)
And computed it with his summation formula.
~ = 0.577218....
Vacca expanded Gamma in infinite series of reciprocals of all the
natural numbers.
The series sum has a denominator that includes the product of all
the prime numbers. But there is no number that is divided by all
the primes. Hence, no number for the denominator of a rational
number that equals the series.
Therefore,
Euler's Gamma is Irrational.
The same argument applies to show that =, e, ((3),{(5),¢{(7),... are
Not rational numbers.
Vacca series expansion of Gamma applies to show that
Gamma is Not a Liouville number.
And we cannot say that Gamma is transcendental on account of
its being a Liouville number which it is not.

We show that
Gamma is the limit of a sequence 7, of transcendentals.

This Does Not mean that Gamma is transcendental But that

As far as we can ever compute, for any finite n,
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the partial sum ~,  is a transcendental number.

Indeed, a sequence of transcendentals need not converge to a
transcendental number.

In 2022, we derived' an expansion for 1, which we named The

Archimedes Series for 1

1(m\3 4 2 (m\5 4 A7 (m\7 4 62 ()9
+3() +15(4) +315(4) +2835(4) +

(819)(691) /r\11 5461 (w13 22" 1) p (p\2n—1
3%527(11)(91) (4) + 3°5%7(11)(13) (4) Foeee T (2n)! Bn(4) T

where B =Bernoulli Numbers
Since 7 is transcendental, the Partial Sums of the Archimedes
Series for 1 are transcendental numbers that converge to the
algebraic number 1

And the
Transcendental partial sums 1 transform to Algebraic 1
We shall say that besides being an Algebraic Number,
1 is a Sequentially Transcendental Number

That is, there is a sequence of transcendentals that converges to 1.
In fact, for an infinite hyper-real N we cannot compute the
algebraic partial sum with N transcendental terms.

As far as we can ever compute, for any finite n,
the partial sum 1 is Transcendental.

Similarly, for ~

L H. Vic Dannon, "Archimedes Series", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11
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As far as we can ever compute, for any finite n,
the partial sum v _is a Transcendental number.

This leads us to discuss the meaning of Sequential Transcendence
versus Transcendence.
And we conclude that

Sequential Transcendence is

a superior characterization of a number.
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1.

Zeta Series for Gamma

For an infinite Hyper-real N, Euler defined

1 3 1 4 1 N +1
——log—=|+|=-—log—|+..+|—=—log———
e i it ki

Proof: the Harmonic Series is

v =(1-1log2) +

11 1 1 1
I+ =444t —+——+
2 3 4 N N+1

Euler defined s(N) by

1 1 1
fyzl—i-—-l-——i—...—l—ﬁ—log(l—i—]\f)

2 3
1 1 1 3 4 N +1
=|1+=-+=-+...+—=|—|log2+log=+log—+...+1
[+2+3+ —I—N] [og —|—0g2—i— 0g3—1— + log J
1 3 1 4 1 N +1
=(1—-log2)+|=-—log—|+|=—log=|+..+|—=—1lo Al
(1 —1log2) [2 g2] [3 gBJ [N 8 ]

From this v can be expanded in zeta series
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1

7 =5¢(2) = 5<B)

2

1
3

1 1
+ ZC‘(4) — gC(5) +...=0.577218....

¢(2) =1.6449340668482264364...
¢(3) =1.2020569031595942853...
¢(4) =1.0823232337111381915...
¢(5) =1.0369277551433699263...

<
(

¢(8) =1.0040773561979443393...

)
)
)
)
)
)
)
)

¢(9) =1.0020083928260822144...

1 1 1
___+___+__
2 3
1 1
1—log2=-—=+4-———
5 5

6) =1.0173430619844491397...
¢(7) =1.0083492773819228268...

=1.0009945751278180853...
=1.0004941886041194645...
=1.0002460865533080482...

(10)
(11)
(12)

¢(13) =1.0001227133475784891...
(14) =1.0000612481350587048...
(15)
(16)
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og[14 ]2 11,11 11,11
*UT2) T2 22 T3 12 57 ¢
B oSS S S IS S NI S I
2 %9 T 99 39 a9l 5y
logl1 412t 11 11 11 11
g 3) 3 23 33 43 53
S O PP U0 S 0 S O I
3 °37 9% 33 43" 53
ogl1+4|=t 1L 11 11 11
i S IR VO VU VUV
B P U NI N S
2 U ow 3w ay

1 11 11 11 11

1
log|ll+—|=———-"—4+ - — - — 4~ _
g[ NJ N 2N’ 3N° 4AN' 5N
1 N+1 11 11 11 11
= |— —log =—— ———F+—— — =
N N 2N* 3N* 4N' B5N°
1 3) (1 4 1 N +1
—(1-1log2)+|=—log2|+|=—log= |+ +|— —log~—"1=
7= (1~ log2) [2 gz] [3 gg] [N TN
4yt ot 1
> FrE et
(2
1 11 1 1
—g +—3+—3+...+$+...+—3
¢(3)

N—————
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2.

~ is Irrational

Vacca Series? for v

1 1
—1l===
7T
1 1 1 1
+2[—-—=—4+—-——=
4 5 6 7
1 1 1 1 1 1 1 1
+3z-+=-=+=——-=+=-=—
8 9 10 11 12 13 14 15
1 1 1 1
+m|— — F o —
om - 9m 41 gm+l _o omtl _1q
~ is Irrational
Proof:
1
- 11—
7T
1 1
+ 2| —+ —
4-5 6-7
+ 3 1 + ! + ! + !
8-9 10-11 12-13 14-15
1 1
+m|—— + .. 4+ |+ .....
2m(2m + 1) (2m+1 . 2)(2m+1 o 1)

Z Steven R. Finch, "Mathematical Constants", Cambridge U Press, 2003, p.31

10
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v =0.57721 56649 01532 .....
is the sum of infinitely many rational numbers with common
denominator that is the product of all the natural numbers,
2.3.4....=N!
which includes the product of all the prime numbers
Dy Dy Dy e
There is no finite natural number

q
that is divided by all the primes.

Thus, there is no rational number P that equals Gamma.
q

Therefore, Gamma is Not a rational number.

That is, Gamma is Irrational.]

11



Gauge Institute Journal, Volume 19, No. 3, August 2023

3.

v is Not a Liouville Number

Liouville showed that

If
a = the zero of a reduced polynomial

P (z) oforder n,

and if « is the limit of a sequence of rational numbers,

so that
p,,> and ¢ are relatively prime,

And if there is a constant C,, > 0 so that

q, >C,_
Then,
n—+1
1
o —Pml s —]

H. Vic Dannon

The negation of this statement is a criteria for transcendence.

If

7 = limit of a sequence of rational numbers,

p—m, sothat p ,and ¢, are relatively prime,

D

and if for each m = 1,2,3,...,

12
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o

1 ]m—I—l

o

Then,

T = transcendental .

The partial sums of the Vacca Series are such rationals

Po _ 4 1
q, 2-3
1 1
+2|— +—
[4 5 6 7]
1 1 1 1
+3 + + +
8-9 10-11 12-13 14-15
1 1
+Mm|—————————+ e
2m(2m + 1) (2m+1 2) (2m+1 1)]
11
q, (2m+1 1)|
Dy, 1 1
2l =(m—+1
‘/y q,, ( + )(2m+1(2m+1+1> (2m+2 _2)(2m+2_1>) +

is not bounded by

[i]m—i—l B [ 1
qm o (2m—|—1 . 1)[

Therefore, v is not a Liouville Number.[]

m+1
for all m = 1,2,3,...

13
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4.

~v is Sequentially Transcendental

For n = 1,2,3,4...

1 1 1
v, =1+ 5 + 3 + ...+ — —log(n + 1) = transcendental
n
Proof:
1 1 1 1
v, =1+=+=+..+—+ log
2 3 n n 41
v —_—
rational transcendental
By Lindemann, e” = algebraic = 7 = transcendental
Therefore,

=transcendental

e N+l — 1 —algebraic = log
N +1

Therefore,

Y, Pn = transcendental.
n!

If v, =algebraic, then by the field property of algebraic numbers,

Y, — P _ algebraic.

n!
From that contradiction, it follows that v, =transcendental.[]

For the infinite hyper-real number N,

13 1 N+1
——log—|+..+|——1lo .
> g2] [N TN ]

Ty = (1 —log2) +

14
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N +1 1 N + 2
1—log2)+..+|——log——|+|——— 1o
T = 82) [ 8N ] [N+1 N +1
B ;_ N +2
N TN TN T BN 11

1 11,1 , 1, 1 .
= — S + o (—) —
N+1 [N—i—l 251 T3t
1, 1 5, 1, 1 4 1 1
= o (— )P - (— P () =
2(N+1) 3<N+1) 4(N—|-1)

L
= Order of (——)
N +1

That is, 7y, is infinitesimally close to .

Gamma is the limit of a sequence 7, of transcendentals.
This Does Not mean that Gamma is transcendental But that
As far as we can ever compute, for any finite n
the approximation -, is transcendental.

Indeed, a sequence of transcendentals need not converge to a
transcendental number.

In 2022, we derived® an expansion for 1, which we named The

Archimedes Series for 1

® H. Vic Dannon, "Archimedes Series", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11

15



Gauge Institute Journal, Volume 19, No. 3, August 2023 H. Vic Dannon

_(819)(69) my11 5461 (m)\13 2" (2" 1) p (x\2n—1
36527(11)(91)(4) Jr:)f>5?7(11)(13)(4) Feee T (2n)! Bn(4) T

where B, =Bernoulli Numbers
Since 7 is transcendental, the Partial Sums of the Archimedes
Series for 1 are transcendental numbers that converge to the
algebraic number 1
And the
Transcendental partial sums 1 transform to Algebraic 1
We shall say that besides being an Algebraic Number,
1 is a Sequentially Transcendental Number

That is, there is a sequence of transcendental numbers that
converges to 1.

In fact, for an infinite hyper-real N we cannot compute the
algebraic partial sum with N transcendental terms.

As far as we can ever compute, for any finite n,
the partial sum 1 is a Transcendental number.

We conclude that

7 is Sequentially Transcendental Number

Meaning that,

As far as we can ever compute, for any finite n,

the partial sum 7,  is a transcendental number.

16
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.

e’ is Irrational and Sequentially

Transcendental Number

Irrationality

Using Vacca expansion for vy

el =—+
0!

1(, 1 1 1 1 1 1 1
+—|1——+2 - +3 - + + +
123 (45 6-7 89 10-11 12-13 14-15
R (R S,
2.3 |45 6-7

is the sum of infinitely many rational numbers with common

1 1 1 1 1 )
L= 1 T T T
21 8.9 10-11  12-13  14-15

denominator that includes the product of all the prime numbers
Pyt Pyt Pyt
There is no finite natural number

q
that is divided by all the primes.

Thus, there is no rational number P that equals e”
q

Therefore, ¢” is Not a rational number.

That is, ¢ is Irrational.]

17
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Sequentially Transcendental

For n =1,2,3,...,N, |e/» = Transcendental

Proof:

1-4—1—1—1—1—...%—l — 10g2—10g2—10g§—....—10gn+1

1.1 1
I e
n

By Hermit, e 2 3 = ertional — transcendental

log1 logg log§ log—n

e'n = (transcendental)e 2e 3e 4.e ntl
= (transcendental)lgé.. n—1_ g
234 4 n+1

L:algebrauic
n+1
Therefore,

(n + 1)’ =transcendental.
If ¢’» =algebraic, then by the field property of algebraic numbers,
(n 4+ 1)e’» = algebraic.

From that contradiction it follows that ¢’» =transcendental.(]
This holds for any n = 1,2,3,4,...,

Consequently,

e’ = Sequentially Transcendental

18
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6.

e™ is Irrational and Sequentially

Transcendental Number

Irrationality

Using Vacca expansion for 7y, and Leibniz expansion for m

ewzi'—l—

1( 1 1 1 1 1
N PSR, Y I U 7] 1§

11 2.3 4.5 6-7 35

2 2

1(. 1 1 1 1 1
+—1 + + .o Ll1-=4+=— ] +..
211723 4.5 6-7 3 5

is the sum of infinitely many rational numbers with common
denominator that includes the product of all the prime numbers

Pyt Pyt Pyt
There is no finite natural number

q
that is divided by all the primes.

Thus, there is no rational number P that equals "
q

Therefore, ¢ is Not a rational number.

That is, ¢’"is Irrational.]

19
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Sequentially Transcendental

For n =1,2,3,....N, |¢™"» = transcendental

Proof:
11 1 1 (-1t
1 A1—=+...
[+2+3+ 4+ ] gt 2n—1]
elynﬂ-n — 6 rational
Transcendental
_1\n—1
—10g2—log§—logé— —lo Lﬂlll—l—l-...-l—( 1
2 3 n 3 2n—1
X e
3 4[1 Ly 0
log log log 1g7 T3 T o
= (Transcendental)([e 2][ e 4]l L)) "
Bl
n+1
_1\n—1
b G
= (transcendental) () "
n+1
Therefore,
_1\n—1
{ars G
(n+1) "7 Je™" =transcendental.
Algei)raic

If ™7 =algebraic, then by the field property of algebraic

1 (_1)n71
I—+..+
3 2n—1

1
numbers, (n + 1) e™n =algebraic.

Algeioraic

From that contradiction, it follows that ¢™7» =transcendental.]
This holds for any n = 1,2,3,4,...,

Consequently,

e™ = Sequentially Transcendental

20
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7.
ve is Irrational and Sequentially

Transcendental Number

Irrationality

Using Vacca expansion for v, and Euler's expansion for e

1 1
+
4.5 6-7

1 11 1 1
1——+2 — =ttt
2.3 ol 11 2! 3

e =

is the sum of infinitely many rational numbers with common
denominator that includes the product of all the prime numbers

Dyt Py Dy e
There is no finite natural number

q
that is divided by all the primes.

Thus, there is no rational number P that equals e
q

Therefore, ¢ is Not a rational number.

That is, ¢’ is Irrational.]

Sequentially Transcendental

For n =1,2,3,..,.N, |v,e, = transcendental

Proof:

21
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7,6, = (transcendental) (1 +1+ 5+t #)

rational algebraic

Therefore,

,ynen

algebraic

=transcendental.

If ~,e, =algebraic, then by the field property of algebraic

V.6, _ algebraic

numbers, = algebraic.

algebraic - algebraic
From that contradiction, it follows that ~ e =transcendental.(]
This holds for any n = 1,2,3,4,..., including the hyper-real number

N . Consequently,

ve = Sequentially Transcendental Number

22
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8.
~vr is Irrational and Sequentially

Transcendental Number

Irrationality

Using Vacca expansion for 7y, and Leibniz expansion for

’}/7'(':11 + 2 L + ! +...14
2-3 4-5 6-7

T E
3 5

is the sum of infinitely many rational numbers with common
denominator that includes the product of all the prime numbers

Dyt Py Dy e
There is no finite natural number

q
that is divided by all the primes.

Thus, there is no rational number L that equals vy
q

Therefore, v is Not a rational number.

That is, y7 is Irrational.[d

Sequentially Transcendental

For n =1,2,3,...,N, |y,m, = transcendental

Proof:

23
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_1\n+1
7, T, = (transcendental)4|1 — 1 + 11 + .+ (=1)
3 5 7 2n —1
algelv)raic
v T
Therefore, —-—"— —transcendental.
algebraic

If ~ m =algebraic, then by the field property of algebraic

Tny

— —algebraic.
algebraic

numbers,

From that contradiction, it follows that v, = = transcendental.(]
This holds for any n = 1,2,3,4,...,

Consequently,

~m = Sequentially Transcendental Number

24
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9.

v + e is Irrational and
Sequentially Transcendental

Number

Irrationality

Using Vacca expansion for v, and Euler's expansion for e

1 1
b

4-5 6-7 o 1! 2! 3!

1 11 1 1
7+e:[12 2 +[—+—+—+—+...

is the sum of infinitely many rational numbers with common
denominator that includes the product of all the prime numbers

Dyt Py Dy e
There is no finite natural number

q
that is divided by all the primes.

Thus, there is no rational number P that equals v + ¢
q

Therefore, v + ¢ is Not a rational number.

That is, v + e is Irrational.[]

Sequentially Transcendental

25
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For n =123,...,N, |y, +e, = transcendental

Proof:
1 1 1
v, + e = (transcendental) + (1 4+ 1+ — 4+ — + ... + —)
o . 2! 3! n!
rational yalgcbraic
Therefore,

v, + e, — algebraic =transcendental.
If v, +e, =algebraic, then by the field property of algebraic
numbers,y, + ¢, — algebraic =algebraic.

From the contradiction, it follows that v+ e, =transcendental.[]
This holds for any n = 1,2,3,4,...,

Consequently,

v 4+ e = Sequentially Transcendental Number

26
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10.
~v + 7 is Irrational and
Sequentially Transcendental

Number

Irrationality

Using Vacca expansion for v, and Leibniz expansion for m
1 1

+ .| +41l—=4+=—..
3 9

is the sum of infinitely many rational numbers with common

1 1 1
y+m=]|1 +2 +
2-3 4-5 6.7

denominator that includes the product of all the prime numbers
Dyt Py Dy e
There is no finite natural number

q
that is divided by all the primes.

Thus, there is no rational number L that equals v + 7
q

Therefore, v + 7 is Not a rational number.

That is, v + 7 is Irrational.

Sequentially Transcendental

27
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For n =1,2,3,..,N, |y, + 7, = transcendental

Proof:

_1\n+1
7, + m, = (transcendental) + 4|1 — L + 1.1 — .+ (Vi
3 5 7 2n —1

algelv)raic

Therefore, v, + m, — algebraic =transcendental.

If ~, + m, =algebraic, then by the field property of algebraic
numbers, v, + 7, — algebraic =algebraic.

From the contradiction, it follows that
v, + m, =transcendental.]

This holds for any n = 1,2,3.,4,...,

Consequently,

v + m = Sequentially Transcendental Number

28
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11.

Bernoulli Series for ~

V=3B, + B+ By + 1By + By + 5By + By + 1By + -

The Bernoulli Numbers are all rational numbers:

4 4 30
1py =1Ll ~[4]107
1B =1~ —[4.1(6)]107

1 1 —3617 ~ __ -1
LB, = L5800 & [4.432]><10

1 — 1 43867
s Bis = 15700~ 3-053954330

1 1 —174611 ~ __
LBy, = L=l ~ _96.4562(12)

Proof:

By Euler-Maclaurin Summation,
z=N

% + ..+ % — %d:c =
=1

29
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1,1 1
(I+N)+_' 4130 L 61421

1 1 3! 5!

N |~

[$2xN_i_1—1[ Iz ]x1+11[5|$6x{\7+
_v——‘

§ 10! 66 ¢
7! 9!

+ L =T e L 9l R

— 1 1-1,11 4 1-1,415
_2<1+ +230+342+430+566+m)

30
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12.

Fast-Converging Bernoulli Series

_ 1 11
’y‘n:w =1+.4+L—loglo+1Ll 4

1 1 1 1 1 1 1 1 1 1
+ip L 41ip L ylp 1l 4 1lp 1L 4 1p L 4
222100 4 %10t 0 68100 0 88108 0 10 19 1010
1 =1 1 -1 5
6 30 42 30 66

1B, =1Ll ~[4]107 = x107% ~ [4]107
1By =1l x —[4.1(6)]107° = x107° ~ —[4.1(6)]107"
LB, =12~ [7.(67)]107° = x107"" =[7.(57)]107"

LB, =18~ _[21]107 = %107 = —[2.1]10 "

—_

LB, =L1I~[8(3)]107 = x107" =[8.(3)] x 10716

1 — 1 =3617 ~ __ -1 -16 ~ _ —17
LB, = L5300 ~ —[4.432]x 107" = x107" &~ —[4.432] x 10

1 — 1 43867 ~ -18 —18
LB = LT 3053954330 = x107" ~[3.05395433]10

1 1 =174611 ~ __ -20 —-19
LBy, = L6 v —26.4562(12) = x107* & [2.64562(12)]10
Proof:

=N T=n

z=N
1o+t - [ldo=1+.4+1- [ldt{tt. +1- [ld
r=1 r=1 r=n
logn

31
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By Euler-Maclaurin summation

z=N
1 1 _ 1 —
n+1+ +N fxdx
r=n
— 1(1 1 11 21=N | =N 1 1 | 61z=N
=50 +3)+ 53l ]z_n+4,30[3x ]zn+6,42[ 5 TN
— ~
n! n=? 3'1f4 5!n 6
1 | .—812=N 1 5 | 10 z=N
+8!30[ 7:(:‘ xn—l—m'%[ 9la™ "2, + ...
7in~8 9ln 10
-11,111 , 1-11 , 111 4y 1-11 , 15 1
2n+26n?+4 0n4+642n6+830 8+ 10 66 p, 0+
= 1
Vo = 1+ 15 — logl0 +

32
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13.
Sequential Transcendence versus

Transcendence

A number ¢ is Transcendental if it is not the root of any n degree
polynomial equation with rational coefficients, for any finite
natural number n.
This definition excludes any infinite hyper-real number N.
Indeed,
13.1

The Transcendental number 7 is the root of a polynomial

equation with rational coefficients of degree N.

Proof One such polynomial equation of degree N with rational
coefficients follows from our 2022 derivation®* of an expansion for

1, which we named The Archimedes Series for 1

(819)(691) (z\11 5461 ()13 222" 1) p (p\2n—1
36527(11)(91)(4) +35527(11)(13)(4) Faee T (2n)! Bn(4) T

where B, =Bernoulli Numbers.[]

Similarly, our definition of sequential Transcendence breaks down

for n =N

*H. Vic Dannon, "Archimedes Series", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11
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We defined a number £ to be sequentially transcendental if for
any finite natural number n there a transcendental number as
close as we wish to &.
This definition excludes any infinite hyper-real number N.
Indeed, if we allow n = N, then
13.2

For an Algebraic, and Sequentially Transcendental o,

¢y must be algebraic

For instance, for the Algebraic number 1, the partial sum

Ly =5 +30° + £ + 350 + (3 +

4 15 315 Y4 2835 4

s

_(819)(691) my11 5461 (w13 22" 1) p (x\2n—1
3%527(11)(91) (4) 3°5%7(11)(13) (4) eee T (2n)! BN(4)

where B, =Bernoulli Numbers for n = 1,2,...N

is infinitesimally close to 1,

1 =1, +infinitesimal
Therefore,

1 ={the standard part of 1}=1

algebraic
That is, for any finite n,

1, = transcendental

But for an infinite hyper-real N
1, =algebraic

It follows that
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Our definitions of Transcendental, and Sequentially
Transcendental apply only to finite n
In any event, we cannot compute with any infinite n.
But if we are limited to finite n, then the transcendental = is

actually the Leibniz rational partial sum

_ 1\n+1
Y PO S
3 5 2n —1

that can be made as close as we can compute to =

And ~ is actually the transcendental

1 1 1
v, =14+=-+=-+..——log(n +1)
2 3 n

that can be made as close as we can compute to v
In other words, since transcendence breaks down at the forever
incomprehensible infinity
Sequential Transcendence is way more informative then
Transcendence
In 2022, we derived® an expansion for 7, which we named The

Archimedes Series for =

T = %{Oz(27‘l’) + %a3(27r) + %a5(27r) + %047(271') + %&9(277) +

_(819)(691) 11 5461 13 20220 1) o 9 1
+36527(11)(91)a (27T)+35527(11)(13)a (2m)+.... + (2n)! B,a (2m) + ...}

where «(27) = arctan(27) ~ 1.412965137..

® H. Vic Dannon, "Archimedes Series", Gauge Institute Journal, Vol. 18, No 3. August 2022, pp 1-11
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and B, = Bernoulli Numbers.
The Transcendental partial sums

1 1.3 2 5 17 7 62 9
r, = o)+ 3edar) + Fton) + o)+ ')+

_(819)(691) 11 5461 13 222" _1) o 9p_q
+36527(11)(91)a (27r)+35527(11)(13)a (2m)F- (2n)! B,a™(2m)

represent 7 better than any inapplicable statement about its not
being a root of a polynomial equation.
We conclude that

Sequential Transcendence is

a superior characterization of a number.

36



Gauge Institute Journal, Volume 19, No. 3, August 2023 H. Vic Dannon

Appendix
Transcendental Numbers

Liouville i—l— 1 + 1 + 1 + .... = transcendental

10 102! 103! 104!

Hermit erational — 401 scendental

Lindemann |28 — transcendental

e’ = algebraic = T=tanscendental

e = —1 = im = trans = ™ = —1i - trans = trans

a,,, =Algebraically Dependent over Q

iff P(oy,a,) = 0 where P(z,y)has coefficients from Q

\/;,w — algebraically dependent over Q with P(z,y) = 2% — y.
Lindemann-Weierstrass

oy, 0,y = algebraic

B,,B3,, B3y = algebraic, Linearly independent over Q

= B + B,e™ + B,e™ = transcendental

« algebraic = 0 = cosa, sina, tana = transcendental,

a algebraic = 0,1 = loga =transcendental

o, ,,a, =algebraic, linearly independent over Q

= eM,e%,e" = algebraically independent over Q
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= ne™ + ne™ 4+ ne™ = transcendental for any n,n,, 1, € Q

Baker o = a, = o, algebraic

= ¢M,e",e% =linearly independent over A

= Be" + [e™ + Bye™ = transcendental for any 3,5, € A

Gelfond

a = 0,1 algebraic , 3 =irrational algebraic

Gelfond-Schneider
a;,a, = algebraic = 0,1
B,, 3, = algebraic,

1,8,,8, =Linearly independent over Q

— of = transcendental

= af

lay? = transcendental

Baker
o, = o, algebraic = 0,1
8,8, = irrational algebraic,

L,B,,3, = linearly independent over Q
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= ozlﬁ 10452 = transcendental

Gelfond-Schneider
a;,a, = algebraic, = 0,1
B,, 3, = algebraic,

log oy, log o, = Linearly independent over Q

= B, logay + B, loga, = transcendental

Gelfond-Schneider-Baker
oy, 0,4 = algebraic, = 0,1
ﬁoa 617 527 63 = algebraiC,

By, Bys By, B3 =Linearly independent over Q

= eﬁoalﬁ 104262&53 = transcendental

Gelfond-Schneider-Baker
ay,0,,a, = algebraic, = 0,1
B, = 0,8,,8,,8; = algebraic,

log a,log oy, log oy = Linearly independent over Q

= B, + B,logay + 3,loga, + B;loga, = transcendental
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