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Preface 

 

Infinity is the number of all the Counting Numbers, 1, 

2, 3,… And it is the number of the all Quotients of 

Counting Numbers, such as 3/17,22/7,… 

And it is the number of all the Real  numbers between 

0, and 1, such as 0.1234567891011121314151617…. 

It seems that there are more Real numbers than 

Quotients, and more Quotients than Counting 

Numbers. 

But we can arrange the Quotients in a sequence, and 

count them as in 1,2,3,… 

So the infinity of Quotients is no larger than the 

infinity of the Counting numbers. 

Can we arrange the real numbers between 0, and 1 in  

a sequence, and count them as in 1,2,3,…? 

Here, we sequence the real numbers, and conclude 

that all infinities are equal.    
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1 

the infinity of the 

Counting numbers 

 

To conceive the idea of infinity, we consider the 

sequence of Counting numbers, as it evolves to 

infinity.  

Namely, the sequence 
1,2,3,4,...... 

that continues endlessly,  has infinity at its “no-end”.  

The  

Infinity of the Counting numbers 

is an infinity that we denote by 

{ }1,2,3...Inf . 
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2 

the  Infinity of 

Quotients 

 

The Quotients of Counting numbers such as  
3 17 777
, , ,...

7 5 11
. 

can be listed in an infinite square 

Each side of the square has  

{ }1,2,3,....Inf  

Quotients.  

Therefore, the infinity of Quotients is 

{ } { }( ) 1,2, 3,.... 1,2, 3,....Inf Quotients Inf Inf= ×  
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1 1 1 1 1
51 2 3 4

2 2 2 2
1 2 3 4

3 3 3
1 2 3

4 4
1 2

5
1

... ... * ... *

... ... ... ...

... ... ... * ... *

... ... ... ...

... ... ... * ... *

... ... ... ...

... ... .... * ... *

... ... ... ...

... ... ... * ... *

... ... ... ...

* ... * ... *

...

* ... *

...

*
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3 

the  infinity of real 

NUMBERS 

 

By the “real line”, we mean a line on which we 

marked some point as zero. Then at equal intervals to 

the right of  ,  we mark the counting numbers 0

 1  ,2,3...

and at mirror images of these points to the left of  0 ,  

we mark the negative counting numbers  
.... 3, 2, 1,− − −  

To every point on the line, in between our marks of 

the counting numbers, we assign a number that 

measures its distance from . 0

We get many numbers, a continuum of numbers, all 

the real numbers.  
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The real numbers, have the same property as the 

Quotients that between any two real numbers there is 

another real number. 

Thus, finding the infinity of the real numbers requires 

a specific arrangement of them. 

A quotient is determined by two counting numbers: 

its numerator, and its denominator. Each pair of 

counting numbers determines a quotient, and all the 

pairs of counting numbers represent all the Quotients.  

Similarly, a real number can be determined by using 

the two digits, 0, and 1.  Each infinite sequence of 0’s 

and 1’s represents a real number, and all the infinite 

sequences of 0’s and 1’s represent all the real 

numbers.  

We will attempt to find the Infinity of the real 

numbers based on this representation.   

We will express the Infinity of the real numbers in 

terms of the infinity of the Counting numbers.  
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The Infinity that we aim to obtain is 
{ }1,2,3,...( ) 2InfInf Reals = . 

We start by considering the real numbers that are 

fractions, that are at least , and at most 1.  These 

fractions may be given by decimal expansions such as  

0

0.137690378354...... 

We will see later that our arguments apply to all the 

real numbers.  

We will construct the fractions between  , and 1, by 

a process that starts with two fractions, and keeps 

doubling the numbers of fractions indefinitely. 

0

We will have  2  fractions, 4  fractions, 8  fractions, 

 fractions,…. 16

and after indefinitely many steps,   

fractions. 

{ }1,2,3,...2Inf

The fraction  

0.875000.....0.... 

equals 
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52 3 4
1 1 1 1 1

8 7 5 0 0 ....
10 1010 10 10

× + × + × + × + × +  

Therefore, we can represent it by the coefficients of 

the powers of 1
10

,  as  

8,7,5,0,0,0,...0,.... . 

If, instead of powers of  1
10

,  we use powers of  1
2

,  

then 

0.875000.....0.... 

equals 

52 3 4
1 1 1 1 1

1 1 1 0 0 ....
2 22 2 2

× + × + × + × + × +  

Then,  in terms of  powers of   1
2

, we can represent it 

by 
1,1,1,0,0,....0,....  

Any fraction between  0 , and 1, can be written as 

sums of powers of  1
2

. 
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The number  is 0

2 3 4
1 1 1 1

0 0 0 0
2 2 2 2

× + × + × + × + ... 

Therefore, we can represent the number 0  by a 

sequence of zeros 

0,0,0,0,0,....0,.... . 

The number  1
2

 is 

2 3 4
1 1 1 1

1 0 0 0 ...
2 2 2 2

× + × + × + × +  

Therefore, we can represent the number 1
2

 by 

1,0,0,0,0,....0,.... . 

We see that 
0,0,0,0,0,....0,.... 0↔  

1
1,0,0,0,0,....0,....

2
↔  

Next, we vary the second digit in the representing 

sequence, and we have four fractions 
0,0,0,0,0,....0,.... 0↔  
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1
0,1,0,0,0,....0,....

4
↔  

2
1,0,0,0,0,....0,....

4
↔  

3
1,1,0,0,0,....0,....

4
↔  

Next, we vary the third digit in the representing 

sequence, and we have eight fractions 

0,0,0,0,0,....0,.... 0↔  

1
0,0,1,0,0,....0,....

8
↔  

2
0,1,0,0,0,....0,....

8
↔  

3
0,1,1,0,0,....0,....

8
↔  

4
1,0,0,0,0,....0,....

8
↔  

5
1,0,1,0,0,....0,....

8
↔  

6
1,1,0,0,0,....0,....

8
↔  



The Equality of all Infinities                                                                      H. Vic Dannon 17

7
1,1,1,0,0,....0,....

8
↔  

Next, we vary the fourth digit in the representing 

sequence, and we have sixteen fractions 

0,0,0,0,0,....0,.... 0↔  

1
0,0,0,1,0,....0,....

16
↔  

2
0,0,1,0,0,....0,....

16
↔  

3
0,0,1,1,0,....0,....

16
↔  

4
0,1,0,0,0,....0,....

16
↔  

5
0,1,0,1,0,....0,....

16
↔  

6
0,1,1,0,0,....0,....

16
↔  

7
0,1,1,1,0,....0,....

16
↔  

8
1,0,0,0,0,....0,....

16
↔  
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9
1,0,0,1,0,....0,....

16
↔  

10
1,0,1,0,0,....0,....

16
↔  

11
1,0,1,1,0,....0,....

16
↔  

12
1,1,0,0,0,....0,....

16
↔  

13
1,1,0,1,0,....0,....

16
↔  

14
1,1,1,0,0,....0,....

16
↔  

15
1,1,1,1,0,....0,....

16
↔  

Each step of this construction of the fractions 

between , and 1, doubles the number of the 

fractions that we obtain. 

0

After indefinitely many such steps, we obtain all the 

sequences   which elements are ’s , and 1’s.  0

The number of such sequences is 
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{ }

{ }1,2,3,....

1,2,3,....  many times
2 2 2 ...... 2 ..... 2Inf
Inf

× × × × × = . 

Consequently, the Infinity of the real numbers 

between 0 , and 1, is  . { }1,2,3,....2Inf

But this is also the Infinity of all the real numbers.  

Indeed,  the sequences which elements are ’s , and 

’s, represent all the real numbers. 

0

1

For instance, if we use the notations 
02 1= , 

3
3
1

2
2

− =  

then, the number  in powers of  2 , is 67.5
6 5 4 3 2 11 2 0 2 0 2 0 2 0 2 1 2 1 2× + × + × + × + × + × + × 0

.

 

                1 2 31 2 0 2 0 2 ...− − −+ × + × + × +

and it is represented by a sequence of  0’s , and 1’s. 
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4 

comparing  Infinities 

 

How do we compare the infinities of the Counting 

numbers, the Quotients, and the reals? 

Observing that there are more reals than Quotients 

and more Quotients than Counting numbers, gives us 

three infinities, each greater than the other.  But we 

may not be sure whether these infinities may equal 

each other. 

Thus, we have, 

{ }1,2, 3,... ( ) (Re )Inf Inf Quotients Inf als≤ ≤ . 

We may be tempted to say that the three infinities are 

strictly greater than each other, but a set smaller than 

the Counting numbers can have Infinity 

{ }1,2,3,...Inf .  
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For instance, the Infinity of the Even Counting 

numbers is { }1,2,3,...Inf . 

Could the Quotients too have Infinity that equals 

{ }1,2,3,...Inf ? 

Indeed, the Infinity of the Quotients equals 

{ }1,2,3,...Inf .  

By the Effective Countability Axiom 

       Any infinite sequence of distinct numbers has  

       infinity that  equals  { }1,2,3,....Inf  

Cantor saw that the Quotients can be sequenced, and 

that their Infinity is { }1,2,3,....Inf . 

We show here that the Real numbers too can be 

sequenced, and their Infinity too is { }1,2,3,...Inf .  

This will say that all Infinities are equal. 
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5 

The Quotients can be 

sequenced 
 

The Quotients have the property that between any 

two Quotients there is another quotient. 

For instance, between the two Quotients, 

7
17

,  and   77
5

, 

there is the quotient 

( )1 7 77
2 17 5

+ . 

This may interfere with the sequencing of the 

Quotients, but as we have seen, the Quotients can be 

arranged in an infinite square. 

Then, by following a Zig-Zag line through the square, 

the Quotients can be sequenced.  



The Equality of all Infinities                                                                      H. Vic Dannon 23

Here are the Quotients sequenced by the Zig-Zag 

line. 

 
1 1 1 1 1

51 2 3 4

2 2 2 2
1 2 3 4

3 3 3
1 2 3

4 4
1 2

5
1

... ... * ... *

... ... ... ...

... ... ... * ... *

... ... ... ...

... ... ... * ... *

... ... ... ...

... ... .... * ... *

... ... ... ...

... ... ... * ... *

... ... ... ...

* ... * ... *

...

* .

→ → →

↓

↓

↓

.. *

...

* →
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6 

countability  axiom 

 

By the Effective Countability Axiom, the sequencing 

of the Quotients establishes that their Infinity is 

{ }1,2,3,....Inf . 

That is, 

l   { } { } { }1,2,3,.... 1,2,3,.... 1,2,3,....Inf Inf Inf× =  

This equality is the Countability Axiom. 

 

The term Axiom means that we may not be sure that 

we can prove it: 

For instance, when we follow the zig-zag through the 

infinite square of the Quotients, we get to infinitely 

many diagonals of infinite length.   

We have to get through those infinitely many infinite 

diagonals, before we get the other side and reach the 

paths with finitely many quotients. 
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We cannot be sure that going through infinitely many 

infinite sequences, will be like going through one 

infinite sequence, and we would rather call this type 

of sequencing an Axiom.  

 

Not being a fact, the Countability Axiom will have a 

Negation, the inequality,  

    { } { } { }1,2,3,.... 1,2,3,.... 1,2,3,....Inf Inf Inf× >

is the  Non-Countability Axiom. 

 

The inequality is a basis to a Theory that has 

infinitely many infinities. 

If we denote , we see that in that 

alternative theory, we will have the infinities 

inf{1,2, 3,...}ω =

ω ω× , 

ω ω ω× × , 

ω ω ω ω× × × , 

……………………. 
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But in 2010 we have disproved the inequality, and 

showed that the Countability Axiom is a FACT, that 

may not be negated.  

Therefore, its negation, the Non-countability Axiom, 

is a falsehood.  
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7                                                  

cantor’s set 

 

Cantor convinced himself that the infinity of the real 

numbers is strictly greater than the infinity of the 

Counting numbers.  

That led Cantor to the question  

 Is there an infinity in between the infinity of the 

reals and the infinity of the Counting numbers? 

The candidate for such in-between-infinity are the 

Quotients.  

But the Quotients can be sequenced, and any set that 

may be sequenced, is “effectively countable”, and has 

the infinity of the Counting numbers.  

As Cantor searched for a set with infinity that is in-

between, he found the set that bears his name the 

Cantor set. 
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Cantor’s Set can lead to the sequencing of the real 

numbers, but Cantor never saw that. 

To see what Cantor missed, we turn to the 

construction of Cantor’s Set. 

The Cantor set is obtained by an inductive process 

similar to our construction here of the real numbers. 

We start with the interval of numbers between 0 , and  

.  1

0 1x≤ ≤ , 

First,  

we delete the middle third open interval,  
1 2
3 3
x< <  

This leaves us with the two intervals 
1

0
3

x≤ ≤  

                   and 
2

1
3
x≤ ≤ . 
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and produces the two quotient endpoints 
1 2
,         

3 3
and , 

that will remain in Cantor’s Set after indefinitely 

many deletions of middle third intervals. 

Second,  

we delete from 1
0

3
x≤ ≤ ,  the middle third open 

interval 
1 2
9 9
x< < , 

and we delete from 2
1

3
x≤ ≤ ,  the middle third 

open interval 
7 8
9 9
x< < . 

This leaves us with the four intervals 
1

0
9

x≤ ≤  

2 1
9 3
x≤ ≤  
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2 7
3 9
x≤ ≤ , 

8
1

9
x≤ ≤ , 

and produces the  new  four quotient endpoints 

1 2 7
,     ,     ,        

9 9 9
and

8
9

,   

that will remain in the Cantor set after indefinitely 

many deletions of middle third intervals. 

Third,  

we delete 

from 1
0

9
x≤ ≤     the interval   1 2

27 27
x< < , 

from 2
9 9
x≤ ≤

3     the interval   7 8
27 27

x< < , 

from 2
3 9
x≤ ≤

7     the interval   19 20
27 27

x< < , 

from 8 1
9
x≤ ≤     the interval   25 26

27 27
x< < . 
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This leaves us with the eight intervals 
1

0
27

x≤ ≤ , 

2 1
27 9

x≤ ≤ , 

2 7
9 2
x≤ ≤

7
, 

8 1
27 3

x≤ ≤ , 

2 1
3 2
x≤ ≤

9
7

, 

20 7
27 9

x≤ ≤ , 

8 2
9 2
x≤ ≤

5
7

, 

26
1

27
x≤ ≤ , 

and produces the  new  eight quotient endpoints,  

1 2 7 8 19 20 25 2
,  ,  ,  ,   ,   ,  ,        

27 27 27 27 27 27 27 27
and

6 ,   
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that will remain in the Cantor set after indefinitely 

many deletions of middle third intervals. 

In the fourth step of the construction of the Cantor 

set, we delete eight middle third open intervals. 

This produces sixteen intervals, and sixteen new 

quotient endpoints, that will remain in the Cantor set 

after indefinitely many deletions of middle third 

intervals. 

Indefinitely many such steps will produce  

{ }

{ }1,2,3,....

1,2,3,....  many times
2 2 2 ...... 2 ..... 2Inf
Inf

× × × × × =  

new, and distinct quotient endpoints. 

We see that the Quotients contain a strictly increasing 

sequence of    distinct Quotients. {1,2,3,....2Inf }

This was missed by Cantor, and everyone else 

whoever looked at the Cantor set. 

This leads to the equality of the infinity of the real 

numbers, and the Counting numbers. 
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8 

cantor’s-set sequencing 

of the  real numbers 
 

We have seen that the real numbers can be 

constructed by  indefinitely many steps, in each of 

which the number of real numbers that we obtain is 

doubled. 

We have seen that the Cantor set is constructed by 

indefinitely many steps, in each of which the number 

of distinct new quotient endpoints that we obtain is 

doubled. 

That correspondence between the two constructions, 

enables us to sequence the real numbers. 

First,  

we assign the two distinct real numbers represented 

by the sequences 
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0,0,0,0,0,....0,.... 0↔ , 

1
1,0,0,0,0,....0,....

2
↔ , 

to the two distinct quotient endpoints that are 

generated in the first deletion   
1 2
,         

3 3
and . 

Second,  

we assign the four distinct real numbers represented 

by the sequences 
0,0,0,0,0,....0,.... 0↔  

1
0,1,0,0,0,....0,....

4
↔  

2
1,0,0,0,0,....0,....

4
↔  

3
1,1,0,0,0,....0,....

4
↔  

to the four new distinct quotient endpoints that are 

generated in the second deletion   
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1 2 7
,     ,     ,        

9 9 9
and

8
9

.   

Third, 

we assign the eight distinct real numbers represented 

by the sequences 
0,0,0,0,0,....0,.... 0↔  

1
0,0,1,0,0,....0,....

8
↔  

2
0,1,0,0,0,....0,....

8
↔  

3
0,1,1,0,0,....0,....

8
↔  

4
1,0,0,0,0,....0,....

8
↔  

5
1,0,1,0,0,....0,....

8
↔  

6
1,1,0,0,0,....0,....

8
↔  

7
1,1,1,0,0,....0,....

8
↔  

to the eight new distinct quotient endpoints that are 
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generated in the third deletion   

1 2 7 8 19 20 25 2
,  ,  ,  ,   ,   ,  ,        

27 27 27 27 27 27 27 27
and

6

}

}

}

. 

Proceeding with these assignments indefinitely, we 

will have the   real numbers assigned to 

the   quotient endpoints that are produced 

in the deletions that generate the Cantor set. 

{1,2,3,....2Inf

{1,2,3,....2Inf

Since all the Quotients can be sequenced,  the  

 quotient endpoints are sequenced, and the 

corresponding real numbers are sequenced too. 

{1,2,3,....2Inf
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9 

direct sequencing of 

the real numbers 

 

Our listing of the real numbers as infinite sequences 

of ’s and 0’s, in section 3, sequences the real 

numbers directly. 

1

we obtain the rows of an infinite triangle.  Each row 

has double the number of infinite binary sequences, 

and the { }1,2,3,..Inf th   row has  such 

sequences. 

{1,2,3,....2Inf }

0 1

00 01 10 11

000 001 010 011 100 101 110 111

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

  

The sequencing follows through the rows. 
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10 

countable  infinity of 

the real numbers 

 

By the Effective Countability Axiom, the sequencing 

of the Reals says that their Infinity is { }1,2,3,....Inf . 

That is, 

l    { } { }1,2,3,...2 1Inf Inf= ,2,3,...  

Cantor however, argued that the Cantorian Infinity of 

the real numbers is strictly greater than 

{ }1,2,3,....Inf . 

In fact, only in a Theory based on the Negation of 

Cantor’s Theory Axioms, the Reals Infinity is strictly 

greater than { }1,2,3,..Inf , and we have proved in 

2010 that such Non-Cantorian theory is prohibited. 
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11 

the Continuum  

Hypothesis 
 

Cantor believed that the infinity of the real numbers 

 is strictly greater than {1,2,3,....2Inf } { }1,2,3,..Inf . 

Thus, he wondered 

Is there an infinity in-between the infinity of the real 

numbers and the infinity of Counting numbers? 

The Quotients are in-between. But their Infinity 

equals that of the Counting numbers.  

As Cantor searched for a set with infinity that is in-

between, he found the Cantor set. 

As we have seen, Cantor’s Set is a very small set, but 

it has as many numbers as  the real numbers.  

Consequently, Cantor believed that there is no 

infinity between the infinity of Counting numbers, 
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and the infinity of the real numbers.  

Indeed, there is no infinity between the equal 

infinities of the real numbers and the Counting 

numbers.  

But Cantor did not know that. 

Being unable to find a proof, Cantor postulated it as 

an Axiom, known as  the Continuum Hypothesis.  

Assume that the infinity of the real numbers  is 

strictly greater than the infinity of the Counting 

number. 

Then, there is no set with infinity in-between the 

infinity of the real numbers, and the infinity of the 

Counting numbers 

Since the infinities of the real numbers, and the 

Counting numbers are equal, there is no infinity in-

between them, and the Continuum Hypothesis is a 

FACT, and not an Axiom. 

Consequently, its negation is a falsehood.  
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12 

consistency of the 

hypothesis 

 

In 1901, Hilbert presented a list of 23 open problems 

in Mathematics.  The problem of proving, or 

disproving the Continuum Hypothesis was first on 

that list, and became known as Hilbert’s First 

Problem. 

That problem remained unsolved. 

To prove the Continuum Hypothesis, it had to follow 

from the commonly accepted Axioms of Set Theory, 

or to be equivalent to one of them. 

The Commonly accepted Axioms of Set Theory 

include Axioms stated by Zermelo, and Fraenkel, and 

the Axiom of Choice that was added later. 
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The Axiom of Choice has equivalent statements that 

do not follow from each other trivially.  So it was 

supposed to be the rational candidate to be equivalent 

to the Hypothesis.  

Nevertheless, no such equivalence was found.   

In 1938, Godel settled for a proof of the Consistency 

of the Continuum Hypothesis. 

Godel created a theory named Forcing Theory, and 

with its aid, argued that the Continuum Hypothesis is 

consistent with the rest of the Axioms of Set Theory. 

Namely, that if the commonly accepted axioms of Set 

Theory are consistent, then adding the Continuum 

Hypothesis to them will cause no inconsistency. 

Godel’s consistency claim did not prove or disprove 

the Continuum Hypothesis. 

It only established that adding the Continuum 

Hypothesis, does no harm.  
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It followed that perhaps,  the Continuum Hypothesis, 

like other Axioms, is a stand-alone, independent of 

the other axioms, and necessary for a proper 

functioning of Set Theory beyond the Zermelo-

Fraenkel-Choice  Theory. 

Or perhaps, the Continuum Hypothesis is indeed 

equivalent to one of the commonly accepted Axioms, 

and that is why it does not negate any of them. 

Thus, Godel’s argument led to no resolution, until his 

methods were applied by Cohen. 
 

 

 

 



The Equality of all Infinities                                                                      H. Vic Dannon 44 

13 

Cohen’s Independence of 

the  hypothesis 
 

In 1963, Cohen used Godel’s Forcing Theory to 

argue that the Hypothesis-Negation is consistent too. 

Cohen claimed that if the Commonly accepted 

axioms of Set Theory are consistent, then adding the 

Hypothesis-Negation will cause no inconsistency. 

The Hypothesis-Negation in Cohen’s terms says that 

n  There is an infinite set which infinity is 

     between the infinity of the Counting numbers, 

     and the infinity of the real  numbers. 

We have seen that because the two infinities are 

equal, there is no such set, and the Hypothesis-

Negation is a falsehood.  
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But for generations to come, Cohen’s erroneous  

claim, established the Hypothesis as an independent 

Axiom of Set Theory. Independent of the rest of the 

Axioms of Set Theory. Therefore, impossible to be 

proved, and necessary to be added to the rest of the 

Axioms, to ensure a complete Set Theory.  

Cohen’s claim left the impression that Hilbert’s First 

problem was either solved, or is unsolvable. But it 

became commonly accepted that the problem was 

closed. 

In response to the Hilbert problem that asked for a 

proof or disproof, Cohen’s answer was, there is no 

proof,  the Continuum Hypothesis is a stand-alone 

Axiom. 

According to Cohen, either the Hypothesis can be 

added to the Zermelo-Fraenkel-Choice Axioms, to 

obtain Cantor’s Set Theory, or its Negation may be 

added, to obtain a Non-Cantorian Set Theory. 
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It is safe to say that very few read Cohen’s 

arguments.  

It is safe to say that even fewer followed Cohen’s 

arguments. 

No one was up to disputing Cohen’s arguments, but it 

was difficult to believe that the Continuum 

Hypothesis is “true” like any of the  Zermelo-

Fraenkel Axioms, and the acceptance of the 

Continuum Hypothesis as an Axiom did not take 

place.  

Cohen’s result had to mean that there is another Set 

Theory that utilizes the Hypothesis-Negation.  

But the alternative Set Theory was never developed. 

That should have indicated that there may be 

something wrong with Cohen’s claims. 

Indeed, we will see that adding the Hypothesis-

Negation to the Commonly accepted axioms of Set 

Theory, has to lead to inconsistency. 
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14 

one infinity 
 

As we have seen, the real numbers may be 

sequenced, and their Infinity equals that of the 

Counting numbers. 

Therefore, we have 
{ } { }1,2,3,....2 1Inf Inf= ,2,3,... . 

This equality can be shown to be equivalent to the 

Continuum Hypothesis. 

Cantor’s  “proof” of an inequality, is unconvincing.  

Cantor’s “Diagonal Argument” assumes that the real 

numbers may be listed in a sequence, and exhibits a 

real number that is not on that list.  

But one number missing, means nothing for infinite 

sets.  

For instance, the even Counting numbers have the 

same infinity as the Counting numbers, although 
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there are infinitely many odd Counting numbers. 

The “Diagonal Argument” approach is suitable for 

finite sets.  

It is unsuitable for infinite sets. 

The inequality that Cantor attempted to prove with 

his “Diagonal Argument” holds only in a Theory 

which axioms are Negations of the Cantor’s Axioms.  

For instance, such Theory, has the Continuum 

Hypothesis Negation Axiom that says that there is an 

infinity between the infinities of the Counting and the 

Real numbers  

But since the Continuum Hypothesis is a fact, the 

Continuum Hypothesis Negation is a falsehood. 
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15 

the  axiom of choice   
 

The Choice Theorem says that  

If for each    there  is a non-empty set of 

numbers, then we can choose from each of the sets 

one number, and obtain a collection of numbers that 

has a representative from each set. 

1,2,3,...n =

If we replace the index numbers  with an 

infinite set of numbers I ,  this choice may not be 

guaranteed.  

1,2,3,...n =

There may be an infinite set  of numbers I , so that 

for each index i  in it, there is a non-empty set of 

numbers, with no collection of numbers, that has a 

representative from each set. 

 

The Axiom of Choice is the guess that the choice is 

guaranteed for any infinite set I , and any family of 
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non-empty sets indexed by I . 

However,  since all cardinalities equal ,  {1,2,3,...}Inf

{1,2,3,...}CardI Inf= ,  

and the Axiom of Choice is guaranteed by the Choice 

Theorem. 
 

The Axiom of No-Choice says that there is an infinite 

set, and a family of non-empty sets indexed by it, 

with no collection of numbers, that has a 

representative from each of the non-empty sets. 
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16 

the  continuum 

hypothesis equivalence 

to the axiom  of  choice 
 

The existence of many equivalent statements of the 

Axiom of Choice, suggested that the Continuum 

Hypothesis may be equivalent to the Axiom of 

Choice. 

Godel, and Cohen failed to prove such equivalence, 

and settled for their consistency proofs. 

To show the equivalence, we use a result that Tarski 

obtained in 1924. 

Tarski proved that the Axiom of Choice is equivalent 

to the statement 

        l   For any infinite cardinals α , and ,         β

α β α+ = ×β . 
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Therefore, the Axiom of No-Choice is equivalent to 

the statement 

   n   There are infinite cardinals α , and β ,  so that 

                             α β . α+ ≠ ×β

If we take 

{ }1,2,3,...Infα β= = . 

Then, in Non-Cantorian Axioms, 
{ } { }1,2,3... 1,2,3...Inf Infα β+ = +  

             { }1,2,3...Inf=  

             { } { }1,2,3... 1,2,3...Inf Inf< ×  

              α β= ×

That is, 
α β α+ ≠ ×β  

Thus, the Non-Countability Axiom 
{ } { } { }1,2,3... 1,2,3... 1,2,3...Inf Inf Inf< ×  

is equivalent to the No-Choice Axiom. 

On the other hand, the Non-Countability Axiom is 

equivalent to the Continuum Hypothesis Negation. 
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Therefore, the Axiom of No-Choice, and the 

Continuum Hypothesis Negation are equivalent.  

Consequently, the Axiom of Choice, and the 

Continuum Hypothesis are equivalent.  
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17 

Godel’s consistency, and 

cohen’s  independence 

 

The failure to identify the Continuum Hypothesis 

with any of the Axioms of Set Theory, led Godel in 

1938 to confirm the consistency of the Continuum 

Hypothesis with the other Axioms of Set Theory, and 

led Cohen  in 1963 to confirm the consistency of the 

Continuum Hypothesis Negation. 

Since the Hypothesis is equivalent to the Axiom of 

Choice, Godel’s Consistency result is self-evident.  

The Continuum Hypothesis is consistent with the 

Axioms of Set Theory, because it is one of them. 

The Continuum Hypothesis is just another statement 

of the Axiom of Choice. 

Therefore, Godel’s work amounts to the following 
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If the commonly accepted Axioms of Set Theory are 

consistent, then adding one of them to all of them will 

cause no inconsistency. 

That certainly sounds right, albeit trivial. 

Cohen claimed that the addition of the Continuum 

Hypothesis-Negation to the commonly accepted 

Axioms of Set Theory, will cause no inconsistency. 

But the Continuum Hypothesis-Negation is just 

another statement of the Axiom of No-Choice, and 

the mixing of the  Axiom  of Choice with its 

Negation, must lead to inconsistency.   

That is how Cohen established the Continuum 

Hypothesis as an independent Axiom of Set Theory. 

We have seen that the Continuum Hypothesis is not 

an Axiom, but a fact. 
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18 

well-ordering theorem  

 

The Axiom of Choice is equivalent to the Well-

Ordering Axiom. 

The Counting Numbers are ordered in such a way 

that every subset of them has a first element. 

That property is called Well-Ordering.  

An infinite set of numbers is well-ordered if it is 

ordered, so that every subset of it has a first element. 

 

The Well-Ordering Axiom is the guess that every 

infinite set of numbers can be well-ordered like the 

Counting Numbers. 

 

In 1963, Cohen claimed that it is not possible to 

prove that the real numbers can be well-ordered. 
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However, our direct sequencing of the real numbers 

between ,and , defines precisely such ordering, in 

which any sub-interval of numbers between 0 ,and 1, 

will have a first element. 

0 1

We only need to eliminate the repeating elements in 

that sequencing.  

In the following we describe such well-order.  
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19 

well-ordering the reals 

in [0  with the 

midpoints set 

,1]

In a procedure similar to the sequencing of the reals, 

we construct the rows of the Midpoints Set that 

represents the reals  in [0 , so that every subset of it 

has a first element.  

,1]

The 0th row has one binary sequence representing  
1
1
2

,      

1
2

(1, 0, 0,..., 0, 0, 0...) ↔  

The 1st  row has the two binary sequences, 

2
1
2

(0,1, 0,..., 0...) ↔ , 

2
3
2

(1,1, 0,..., 0,...) ↔  

The 2nd  row has the four  binary sequences,  

3
1
2

(0, 0,1, 0,...) ↔ ,  
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3
3
2

(0,1,1, 0,...) ↔ ,  

3
5
2

(1, 0,1, 0,...) ↔ ,  

3
7
2

(1,1,1, 0,...) ↔ . 

The 3rd  row lists the eight binary sequences that start 

with 

  
4
1
2

(0, 0, 0,1, 0...) ↔ , 

4
3
2

(0, 0,1,1, 0...) ↔  

and end with  
4

4
2 1
2

(1,1,1,1, 0,...) −↔ . 

This listing 
1

01 11

001 011 101 111

0001 0011 0101 0111 1001 1011 1101 1111

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

 

enumerates all the real numbers in [0 , but without 

repetitions.  

,1]
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The  row has  infinite binary 

sequences that represent real numbers in [0 . 

{1,2,3,...}Inf {1,2,3,...}2Inf

,1]

the order follows the rows of the Midpoints Set from 

left to right.  

That is, the first element in this ordering is  1
2

 in the 

1st  row.  

The second element in this ordering is 
2
1
2

, and the 

third is 
2
3
2

.  Both are in the 2nd  row. 

The fourth is 
3
1
2

, the fifth is 
3
3
2

, the sixth is 
3
5
2

, the 

seventh is 
3
7
2

.  All four are in the 3rd  row. 

………………………………………………………. 

Now, to determine the first element in say, 1
1000

[0, ], 

we note that 

9

1 1
1000 2

< . 
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Therefore,  no midpoints appear in 1
1000

[0, ] till the 

10th row.   The 10th row has the midpoints 

10 10 10 10

1 3 5 1023
, , ,....

2 2 2 2
. 

Since 

10

1 1
10002

< , 

the first element of 1
1000

[0, ] is 
10

1

2
. 

 

Similarly, to find the first element in 1 1
16 8

( , ), we note  

that no midpoints of the 4th row appear in 1 1
16 8

( , ).  

Both 

4

1
162

=
1  , and  

4

3 3
162

= , 

are not in 1 1
16 8

( , ). 

The fifth row has the midpoints 
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5 5 5 5

1 3 5 31
, , ,....

2 2 2 2
 

5

1
322

=
1  is not in the interval 1 1

16 8
( , ).  

But 
5

3

2
 is in it, and it is the first element of the real 

numbers interval 1 1
16 8

( , ).  
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20 

transfinite induction 
 

The Axiom of Choice is equivalent to the Transfinite 

Induction Axiom. 

The Induction Theorem says that 

If  a property depends on each number , 

so that  

1,2,3,..n =

1) The property holds for the first Counting number 

. 1n =

2) If the property holds for the Counting number k , 

we can deduct that it holds for the next number 

.  1k +

Then, the property holds for any  1,2,3,....n =

 

The Transfinite Induction Axiom guesses that the 

same holds for any infinite index set  I .  
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It says that if I  is any well-ordered infinite set of 

numbers, and if there  is any property that depends on 

each index i  from I , so that 

1) The property holds for the first element of I ,  

2) If the property holds for all the  that precede 

the index 

'k s

j , we can conclude that the property 

holds for j ,  

Then, the property holds for any index i  in I . 

 

However,  since all infinities equal ,  {1,2,3,...}Inf

{ } {1,2, 3,...}Inf I Inf= ,  

and the Transfinite Induction Axiom is guaranteed by 

the Induction Theorem. 
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21 

the  equal  infinities 

 

Since  

{ } { } { }1,2,3,.... 1,2,3,.... 1,2,3,....Inf Inf Inf× = , 

we have, 

{ }( )31,2,3,....Inf = 

         { } { } { }1,2,3.. 1,2,3.. 1,2,3..Inf Inf Inf= × ×  

         { } { }1,2,3.. 1,2,3..Inf Inf= ×  

         { }1,2,3..Inf=  

By induction, we obtain an infinite chain of  

equalities 

{ } { }( )21,2,3,... 1,2,3,...Inf Inf=  

                         { }( )31,2,3,...Inf=  

                   { }( )41,2,3,...Inf=  
………………………………………………………. 
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                         { }( ) {1,2,3,...}
1,2, 3,...

Inf
Inf=  

                          {1,2,3,...}2Inf=

                          
2( {1,2,3,...})2 Inf=

                          
3( {1,2,3,...})2 Inf=

……………………………………………………..... 
                          

{1,2,3,...}( {1,2,3,...})2
InfInf=

                          
{1,2,3,...}22

Inf
=

                          
{ }( )21,2,3,...

22
Inf

=

                          
{ }( )31,2,3,...

22
Inf

=
……………………………………………………….. 

                          
{ }1,2,3,...2

22
Inf

=

……………………………………………………….
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