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Abstract   The Differential Geometry of Space-Time 

Curves and surfaces, requires the Cross-Product of 4 -

vectors.   

A 3-space curve , parametrized by its arc-length s , is 

characterized  by two curvature functions , and τ . At 

each point along , the Tangent unit vector 

( )x s

( )sκ ( )s

( )x s

'( )
'( )

( ) 1
'( ) x s
x s

T s
x s

≡ = , 

and the Normal unit vector 

'( )
'( )

( ) 1
'( ) T s
T s

N s
T s

≡ = , 

define the Binormal unit vector 

1 2 3

1 2 3

1 1 1

( )
x y z

B s T N T T T

N N N

≡ × = . 
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The Derivatives , , , in the Frenet Frame, T , 

, , satisfy the Frenet Differential Equation. 

'( )T s '( )N s '( )B s

N B

A 4-space curve , parametrized by its arc-length s , is 

characterized  by three curvature functions , , and 

.  At each point along , the Tangent unit vector 

( )x s

( )sκ ( )sτ

( )sω ( )x s

'( )
'( )

( ) 1
'( ) x s
x s

T s
x s

≡ = , 

and the Normal unit vector 

'( )
'( )

( ) 1
'( ) T s
T s

N s
T s

≡ = , 

define the Binormal unit vector 

( )B s T N≡ × , 

which is believed to have six components. 

Clearly, the Curve Equations cannot be written as a mixture 

of 4-vectors, and 6-vectors. 

Thus, the Fundamental Differential Equations of Space-time 

Curves were not developed. 

A 3-space surface , with components along the axes 

 is parametrized by two linearly independent families 

of curves, u , and v .  

( , )x u v

, , ,x y z

At each point on , the Tangent Vector along u   ( , )x u v
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( , ) ( , )u ux u v x u v≡ ∂ , 

and the  Tangent Vector along v   

( , ) ( , )v vx u v x u v≡ ∂ , 

define the Normal to the surface, 

( , ) ( , ) ( , )u vx u v x u v n u v× ≡ . 

The Derivatives , , and  in 

the Gauss Frame, , , , satisfy the Gauss 

Differential Equations.   

( , )uux u v ( , ) ( , )uv vux u v x u v= ( , )vvx u v

ux vx ux x× v

The Derivatives , and  in the Gauss Frame satisfy 

the Weingarten Differential Equations. 

un∂ vn∂

A Space-time surface , with components along the axes 

 is parametrized by two linearly independent families 

of curves, u , and v .  

( , )x u v

, , ,x y z t

At each point on , the Tangent Vector along u   ( , )x u v

( , ) ( , )u ux u v x u v≡ ∂ , 

and the  Tangent Vector along v   

( , ) ( , )v vx u v x u v≡ ∂ , 

define the Normal to the surface, 

( , ) ( , )u vx u v x u v× , 

which is believed to have six components. 
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Clearly, the Space-time Differential Equations cannot be 

written as a mixture of 4-vectors, and 6-vectors. 

Thus, the Fundamental Differential Equations of Space-time 

Surfaces were not developed.  

Recently, we showed that the cross product of 4-vectors is a 

4-vector, and supplied the correct formula for it.   

Applying this formula to Space-time Vectors, we obtain  the 

Differential Equations for Space-time Curves, for Space-time 

surfaces, and for the Normals to a surface in Space time. 
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Introduction 

0.1  Space-time Curve  

A 3-space curve , parametrized by its arc-length s , is 

characterized  by two curvature functions , and τ . At 

each point along , the Tangent unit vector 

( )x s

( )sκ ( )s

( )x s

'( )
'( )

( ) 1
'( ) x s
x s

T s
x s

≡ = , 

and the Normal unit vector 

'( )
'( )

( ) 1
'( ) T s
T s

N s
T s

≡ = , 

define the Binormal unit vector 

1 2 3

1 2 3

1 1 1

( )
x y z

B s T N T T T

N N N

≡ × = . 

The Derivatives , , , in the Frenet Frame T , 

, , satisfy the Frenet Differential Equations. 

'( )T s '( )N s '( )B s

N B

  
'( ) ( )0 ( ) 0

'( ) ( ) 0 ( ) ( )

0 ( ) 0'( ) ( )

T s T ss

N s s s N s

sB s B s

κ
κ τ

τ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥= −⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥−⎢ ⎥ ⎢

⎥
⎥
⎥
⎥
⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

. 

The Differential Geometry of Space-time Curves requires the 
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Cross-Product of 4-vectors.  

A space-time curve , parametrized by its arc-length s , is 

characterized  by three curvature functions , , and 

.  At each point along , the Tangent unit vector 

( )x s

( )sκ ( )sτ

( )sω ( )x s

'( )
'( )

( ) 1
'( ) x s
x s

T s
x s

≡ = , 

and the Normal unit vector 

'( )
'( )

( ) 1
'( ) T s
T s

N s
T s

≡ = , 

define the Binormal unit vector 

( )B s T N≡ × , 

provided the cross product of space-time vectors is a space-

time vector. 

It is not self evident how the Spatial Cross-Product, with its 

1x , 1y , and 1z  components may be generalized to a Space-

time Cross-product with 1x , 1y ,1z , and 1t  components. 

For instance, we can add a column to obtain  

1 1 1 1

? ? ? ?

x y z t

x y z t

x y z t

A A A A

B B B B
, 
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but what will be a fourth raw of that 4  determinant? 4×

It is less evident how the fact that there are six terms of the 

form  

i j j iAB A B−  

that determine the 4-space Cross Product, lead to the belief 

that the 4-Space cross product is six dimensional. 

Clearly, the Curve Differential Equations cannot be written 

as a mixture of 4-vectors, and 6-vectors. 

Thus, the Fundamental Differential Equations of Space-time 

Curves were not developed. 

 

0.2    Space-time Surface 

A 3-space surface , with components along the axes 

 is parametrized by two linearly independent families 

of curves, u , and v .  

( , )x u v

, , ,x y z

At each point on , the Tangent Vector along u   ( , )x u v

( , ) ( , )u ux u v x u v≡ ∂ , 

and the  Tangent Vector along v   

( , ) ( , )v vx u v x u v≡ ∂ , 

define the Normal to the surface, 

( , ) ( , ) ( , )u vx u v x u v n u v× ≡ .    
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The Derivatives , , and  in 

the Gauss Frame, , , , satisfy the Gauss 

Differential Equations.   

( , )uux u v ( , ) ( , )uv vux u v x u v= ( , )vvx u v

ux vx ux x× v

The Derivatives , and  in the Gauss Frame satisfy 

the Weingarten Differential Equations. 

un∂ vn∂

The Differential Geometry of Space-time Surfaces requires 

the Cross-Product of 4-vectors. 

A Space-time surface , with components along the axes 

 is parametrized by two linearly independent families 

of curves, u , and v .  

( , )x u v

, , ,x y z t

At each point on , the Tangent Vector along u   ( , )x u v

( , ) ( , )u ux u v x u v≡ ∂ , 

and the  Tangent Vector along v   

( , ) ( , )v vx u v x u v≡ ∂ , 

define the Normal to the surface, 

( , ) ( , )u vx u v x u v× , 

which is believed to have six components. 

Clearly, the Surface Differential Equations cannot be 

written as a mixture of 4-vectors, and 6-vectors. 
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Thus, the Fundamental Differential Equations of Space-time 

Surfaces were not developed.    

 

0.3   Correct Space-time Cross Product 

Recently, we showed that the cross product of 4-vectors is a 

4-vector, and supplied the correct formula for it. 

In [Dan4], we showed that the 4-space curl is a 4-vector, and 

supplied the correct formula for it. In [Dan5], we obtained 

the Cross-Product of 4-vectors, for space-time 

Electromagnetic Vector Fields. 

Applying this formula to Space-time Vectors, we obtain  the 

Differential Equations for Space-time Curves, for Space-time 

surfaces, and for the Normals to a surface in Space time.  
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1. 

Curl of 4-Vectors 
Let , , , and  be hyper-

real differentiable functions, defined on an infinitesimal area 

element  dS .    dS  projects onto six 2-planes generated by 

the unit vectors 

( , , , )P x y z t ( , , , )Q x y z t ( , , , )R x y z t ( , , , )S x y z t

1x ,1y ,1z , and 1t .  

    

x-y projection  with area  dxdy  and normal  1 1 1x y× = z   

y-z projection  with area  dydz  and normal  1 1 1y z× = t   

z-t  projection  with area  dz  and normal  dt 1 1 1z t× = x   

t-x  projection  with area  dt  and normal  1 1dx 1t x× = y   
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t-y projection  with area dtdy  and normal  

1 0

1 1 (1 1 ) 1 1 (1 1 ) 1 (1 1 ) 1t y y z y z y y y z y× = × × = ⋅ − ⋅ = z  

z-x projection  with area dzdx  and normal  

1 0

1 1 (1 1 ) 1 1 (1 1 ) 1 (1 1 ) 1z x x y x y x x x y x× = × × = ⋅ − ⋅ = y  

The projected areas are 

                          , 1 1x x ndS dS dzdt= ⋅ =

1 1y y ndS dS dtdx dzdx= ⋅ = + , 

1 1z z ndS dS dxdy dtdy= ⋅ = + , 

                           1 1t t ndS dS dydz= ⋅ =

The projections areas are walls of a box with vertex at 

 and sides dx , dy , dz , and dt . 0 0 0 0( , , , )x y z t
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Given positive orientation of a right hand system, 

( )

( , , , ) 1
1 ( , , , )1 1 ( , , , )1

( , , , )
z

z x l
dS

P x y z t
P x y z t dl Q x y z t dl

Q x y z t dxdy
∂

⎡ ⎤
⎢ ⎥∇× = ⋅ + ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∫ 1y l , 

                        
0 0 0 0, , ,

1
( , , , ) ( , , , )

x y
z

x y z t
P x y z t Q x y z t

∂ ∂
=  

( )

( , , , ) 1
1 ( , , , )1 1 ( , , , )1

( , , , )
t

t y l
dS

Q x y z t
Q x y z t dl R x y z t dl

R x y z t dydz
∂

⎡ ⎤
⎢ ⎥∇× = ⋅ + ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∫ 1z l , 

                        
0 0 0 0, , ,

1
( , , , ) ( , , , )

y z
t

x y z t
Q x y z t R x y z t

∂ ∂
=  

( )

( , , , ) 1
1 ( , , , )1 1 ( , , , )1

( , , , )
x

x z l
dS

R x y z t
R x y z t dl S x y z t dl

S x y z t dzdt
∂

⎡ ⎤
⎢ ⎥∇× = ⋅ + ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∫ 1t l , 

                        
0 0 0 0, , ,

1
( , , , ) ( , , , )

z t
x

x y z t
R x y z t S x y z t

∂ ∂
= . 

( )

( , , , ) 1
1 ( , , , )1 1 ( , , , )1

( , , , )
y

y t l
dS

S x y z t
S x y z t dl P x y z t dl

P x y z t dtdx
∂

⎡ ⎤
⎢ ⎥∇× = ⋅ + ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∫ 1x l , 

                        
0 0 0 0, , ,

1
( , , , ) ( , , , )

t x
y

x y z t
S x y z t P x y z t

∂ ∂
=  

( )

( , , , ) 1
1 ( , , , )1 1 ( , , , )1

( , , , )
z

z t l
dS

S x y z t
S x y z t dl Q x y z t dl

Q x y z t dtdy
∂

⎡ ⎤
⎢ ⎥∇× = ⋅ + ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∫ 1y l , 
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0 0 0 0, , ,

1
( , , , ) ( , , , )

t y
z

x y z t
S x y z t Q x y z t

∂ ∂
=  

( )

( , , , ) 1
1 ( , , , )1 1 ( , , , )1

( , , , )
y

y x l
dS

P x y z t
P x y z t dl R x y z t dl

R x y z t dzdx
∂

⎡ ⎤
⎢ ⎥∇× = ⋅ + ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∫ 1z l , 

                        
0 0 0 0, , ,

1
( , , , ) ( , , , )

x z
y

x y z t
P x y z t R x y z t

∂ ∂
=  

The 4-space Curl is the sum of the six area curls.  That is, 

( , , , )

( , , , )

( , , , )

( , , , )

P x y z t

Q x y z t

R x y z t

S x y z t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∇× =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 1 1 1 1z t t x x z x y t y y z
x y y z zR S S P P R P Q S Q Q R

R S P P S Q

S P R Q Q

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ∇× + ∇× + ∇× + ∇× + ∇× + ∇×⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1t

R
 

 

z t

t x x z

x y t y

y z

S R

P S R P

Q P Q S

R Q

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟− + −⎜ ⎟⎜ ⎟= ⎟⎜ ⎟⎜ − + − ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎟⎜⎝ ⎠

. 
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2. 

Cross-Product of 4-Vectors 

2.1 The Cross-product of 4-vectors is the sum of six cross-  

      products of 2-vectors, That is, 

1 1z t t x x z
x y

z t t x x z

x x

y y z z t t x x

z z t t x x z z

A A A A A At t
B B B B B B

A B

A B A B A B A B

A B A B A B A B

A B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥× = × + × + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+

1y

 

                  

1 1x y t y y z
z z

x y t y y z

x x t t y

y y y y z

A A A A A A

B B B B B B

A B A B A B

A B A B A B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ × + × + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1t

y

z

 

                

z t

z t

t x x z

t x x z

x y t y

x y t y

y z

y z

A A

B B

A A A A

B B B B

A A A A

B B B B

A A

B B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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2.2                                1 1  1x y× = z

t

x

y

                                       1 1  1y z× =

                                       1 1  1z t× =

                                       1 1  1t x× =

Proof:   

1 0

0 1 1 0
1 1 1 1

0 0 0 1

0 0

x y
x y z z

x y

A A

B B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥× = × = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

)

.  

 

2.3                   A B  B A× = − ×

 

2.4                   ( ) ( ) (A B C A C B A B C× × ≠ ⋅ − ⋅

Proof:              1 (   1 1 ) 1 1 1y x y y z× × = × = t

x                         (1                 1 )1 (1 1 )1 1y y x y x y⋅ − ⋅ =

 

2.5                { }( ) ( ) '( ) ( ) ( ) '( )
d
A s B s A s B s A s B s

ds
⋅ = ⋅ + ⋅  

                      { }( ) ( ) '( ) ( ) ( ) '( )
d
A s B s A s B s A s B s

ds
× = × + ×  
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3. 

Space-time Curve Frame  
Let  be a Curve parametrized by its arc-length s ,  ( )x s

1

2

3

4

( )

( )
( )

( )

( )

x s

x s
x s

x s

x s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

with continuous linearly independent derivative functions,  

( )
'( )

dx s
x s

ds
= ,   

2

2

( )
''( )

d x s
x s

ds
= ,  

3

3

( )
'''( )

d x s
x s

ds
= ,  

4

4

( )
''''( )

d x s
x s

ds
= . 

 

3.1  The Tangent unit vector At s , 

'( )
'( )

( ) 1
'( ) x s
x s

T s
x s

≡ = . 
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3.2                                   '( ) ( )T s T s⊥  

                        is Normal to the Tangent. '( )T s

Proof:                             , ( ) ( ) 1T s T s⋅ =

'( ) ( ) ( ) '( ) 0T s T s T s T s⋅ + ⋅ = , 

'( ) ( ) 0T s T s⋅ = , 

 

3.3      The Normal unit vector at s  

                                   '( )( ) 1T sN s ≡  

'( ) '( ) ( )T s T s N s=  

 

3.4      The Curvature of  at s  ( )x s

                                   ( ) '( )s T sκ =  

 

3.5      The First Frenet Equation  

                                   '( ) ( ) ( )T s s N sκ=  

 

3.6      The Bi-Normal unit vector at s  

( ) ( ) ( )B s T s N s≡ ×  
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3.7      The Tri-Normal unit vector at s  

( ) ( ) ( )W s N s B s≡ ×  

 

3.8  { ,  is an Orthonormal Vector System at s                       , , }T N BW

( ) ( ) ( )B s W s T s× =  

( ) ( ) ( )W s T s N s× =  

 

3.10   T , and  span the N Osculating (=Tangent) Plane

Span{ , } { : , }T N T Nλ μ λ μ= + ∈  

 

3.11  N , and  span the B Normal Plane

Span{ , } { : , }N B N Bλ μ λ μ= + ∈  

 

3.12  B , and W  span the Bi-Normal Plane

Span{ , } { : , }BW B Wλ μ λ μ= + ∈  

 

3.13  W , and T  span the Tri-Normal Plane

Span{ , } { : , }W T W Tλ μ λ μ= + ∈  
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4. 

Space-time Curve Equations 

The Vector Functions  

'( )T s ,  ,  , and  '( )N s '( )B s '( )W s
are in  

Span{ ( ), ( ), ( ), ( )}T s N s B s W s . 

 

From 3.2,       

4.1                 , and  '( ) ( )T s T s⊥

'( )T s  has no component along . ( )T s

Similarly, 

4.2                , and  '( ) ( )N s N s⊥

'( )N s  has no component along , ( )N s

                     , and  '( ) ( )B s B s⊥

'( )B s  has no component along , ( )B s

                      , and  '( ) ( )W s W s⊥

    has no component along . '( )W s ( )W s
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By 3.3,   only component is along . That is, '( )T s ( )N s

4.3       has no component along , '( )T s ( )B s

'( ) ( ) 0T s B s⋅ = . 

             has no component along , '( )T s ( )W s

'( ) ( ) 0T s W s⋅ = . 

              has no component along , '( )T s ( )T s

'( ) ( ) 0T s T s⋅ = . 

             and by 3.5, the Frenet Equation for  is '( )T s

'( ) ( ) ( )T s s N sκ= , 

 

Similarly, we obtain the Differential Equations for  ,  

, and .  

'( )N s

'( )B s '( )W s

 

4.4        The component of  along  is '( )N s ( )T s

'( ) ( ) ( )N s T s sκ⋅ = − . 

Proof:                       , 0N T⋅ =

                                 .  
( ) ( )

( )

'( ) ( ) ( ) '( ) 0

s N s

s

N s T s N s T s

κ

κ

⋅ + ⋅ =
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4.5        The component of  along  is '( )N s ( )B s

'( ) ( ) ( ) '( )N s B s N s B s⋅ = − ⋅ . 

Proof:                       , ( ) ( ) 0N s B s⋅ =

                                 .  '( ) ( ) ( ) '( ) 0N s B s N s B s⋅ + ⋅ =

 

4.6    The Bi-Curvature (=Torsion) of  at s  ( )x s

                                   ( ) '( ) ( )s N s B sτ = ⋅  

 

4.7    The component of  along  is '( )N s ( )W s

'( ) ( ) 0N s W s⋅ = . 

Proof:  By the Schmidt Orthogonalization Process       

'T x= , 

''
Span{ ', ''}

''
x

N x
x

= ∈ x , 

''' ( ''' ) ( ''' )
Span{ ', '', '''}

''' ( ''' ) ( ''' )

x x T T x N N
B x

x x T T x N N

− ⋅ − ⋅
= ∈

− ⋅ − ⋅
x x

B

, 

' Span{ ', '', '''} Span{ , , }N x x x T N∈ = , 

The projection of  on W  is zero.  'N
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4.8         The Differential Equation for  '( )N s

'( ) ( ) ( ) ( ) ( )N s s T s s B sκ τ= − + , 

 

4.9         The component of  along  is '( )B s ( )T s

'( ) ( ) 0B s T s⋅ = . 

Proof:                       , 0B T⋅ =

                                 .  
' 0

' '
T B

B T B T
⋅ =

⋅ + ⋅ = 0

 

4.10        The component of  along  is '( )B s ( )N s

'( ) ( ) ( )B s N s sτ⋅ = − . 

Proof:                       , ( ) ( ) 0B s N s⋅ =

                                  ' 'B N B N⋅ + ⋅ = 0

                                 
( )

' '
s

B N B N
τ

⋅ = − ⋅ .  

 

4.11        The component of  along  is '( )B s ( )W s

'( ) ( ) '( ) ( )B s W s W s B s⋅ = − ⋅ . 

Proof:                       , ( ) ( ) 0B s W s⋅ =
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                                 .  
'

' '
W B

B W B W
⋅

⋅ + ⋅ = 0

 

4.12    The Tri-Curvature   of  at s  ( )x s

                                   ( ) '( ) ( )s B s W sω = ⋅  

 

4.13       The Differential Equation for  '( )B s

'( ) ( ) ( ) ( ) ( )B s s N s sW sτ ω= − + , 

 

4.14         The component of  along  is '( )W s ( )T s

'( ) ( ) 0W s T s⋅ =  

Proof:                       , 0W T⋅ =

                                 .  
' 0

' '
T W

W T W T
⋅ =

⋅ + ⋅ = 0

 

4.15       The component of  along  is '( )W s ( )N s

'( ) ( ) 0W s N s⋅ = . 

Proof:                       , ( ) ( ) 0W s N s⋅ =

                                 .  
' 0,  (4.7)

' '
N W by

W N W N
⋅ =

⋅ + ⋅ = 0
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4.16        The component of  along  is '( )W s ( )B s

'( ) ( ) ( )W s B s sω⋅ = − . 

Proof:                       , ( ) ( ) 0W s B s⋅ =

                                 .  
' ( )

' '
B W s

W B W B
ω⋅ =

⋅ + ⋅ = 0

 

4.17       The  Differential Equation for  '( )W s

'( ) ( ) ( )W s s B sω= − , 

 

4.18      The Space-time Curve Differential Equations 

'( ) ( )0 ( ) 0 0

'( ) ( )( ) 0 ( ) 0

0 ( ) 0 ( )'( ) ( )
0 0 ( ) 0'( ) ( )

T s T ss

N s N ss s

s sB s B s
sW s W s

κ
κ τ

τ ω
ω

⎡ ⎤ ⎡⎡ ⎤⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥−⎢ ⎥ ⎢⎢ ⎥=⎢ ⎥ ⎢⎢ ⎥−⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥−⎢ ⎥ ⎢⎢ ⎥⎣ ⎦⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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5. 

Space-Time Surface Frame 

Let  be a Space-time Surface Patch parametrized by 

two linearly independent families of curves, u , and v , 

( , )x u v

1

2

3

4

( , )

( , )
( , )

( , )

( , )

x u v

x u v
x u v

x u v

x u v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

with continuously differentiable partial derivatives of any 

necessary order. 

 

5.1   Tangent along the u -Curves 

At each point on , the Tangent Vector along u  is  ( , )x u v

( , ) ( , )u ux u v x u v≡ ∂ , 

and the Unit Tangent Vector along u  is 

( , )
1

( , )u

u
x

u

x u v

x u v

∂
=

∂
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5.2   Tangent along the v -Curves 

At each point on , the Tangent Vector along v  is  ( , )x u v

( , ) ( , )v vx u v x u v≡ ∂ , 

and the Unit Tangent Vector along v  is 

( , )
1

( , )v

v
x

v

x u v

x u v

∂
=

∂
 

 

5.3     The Metric Tensor  at ( ,  )u v

( , ) u u u v
ij

v u v v

x x x x
g u v

x x x x

⎡ ⎤⋅ ⋅⎢ ⎥≡ ⎢ ⎥⋅ ⋅⎢ ⎥⎣ ⎦
 

 

5.4     The Inverse Metric Tensor  at ( ,  )u v

1( ) ( , ) ( , )v v u v ij
ij

v u u u

x x x x
g u v g u v

x x x x
−

⎡ ⎤⋅ − ⋅⎢ ⎥= ≡⎢ ⎥− ⋅ ⋅⎢ ⎥⎣ ⎦
 

 

5.5      Area of parallelogram generated by , and   ux ux

( , )u v u vArea x x x x= ×  

2 2
11 22 12det( ) ( )u v ijx x g g g g× = = −  

Proof:  
2

u vx x×  expanded into its components by 2.1, equals  
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             expanded into components.  2
11 22 12( )g g g−

 

5.6      The Normal Unit Vector at ( ,  )u v

2
11 22 12

( , ) 1
( )u v

u v u v
x x

u v

x x x x
N u v

x x g g g
×

× ×
≡ = =

× −
 

 

5.7     The Bi-Normal Unit Vector at ( ,  )u v

( , ) 1 ( , )
ux

B u v N u v≡ ×  

 

5.8      is in the Tangent Plane  ( , )B u v

Span{ , } { : , }u v u vx x x xλ μ λ μ= + ∈ . 

Proof:    is normal to .  ( , )B u v ( , )N u v

 

5.10      The Tri-Normal unit vector at ( ,  )u v

( , ) ( , ) ( , )W u v N u v B u v≡ ×  

 

5.11  {1  is an Orthonormal Vector System             , , , }
ux
N B W

( , ) ( , ) 1 ( , )
ux

N u v B u v u v× =  
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( , ) 1 ( , ) ( , )
ux

B u s u v N u v× =  

 

5.12   1
ux
, and 1

vx
 span the Tangent Plane

Span{1 ,1 } { 1 1 : , }
u v u vx x x xλ μ λ μ= + ∈  
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6. 

Space-time Surface Curvatures 

Since , 1N N⋅ =

0uN N∂ ⋅ =  

Thus, 

6.1     , and  ( , ) ( , )u uN u v N N u v≡ ∂ ⊥

( , )uN u v  has no component along , ( , )N u v

          , and  ( , ) ( , )vN u v N u v⊥

( , )vN u v  has no component along , ( , )N u v

Similarly, 

6.2      , and  ( , ) ( , )uW u v W u v⊥

( , )uW u v  has no component along , ( , )W u v

           , and  ( , ) ( , )vW u v W u v⊥

( , )vW u v  has no component along ,      ( , )W u v

 

Since     , 0ux N⋅ =

0uu u ux N x N⋅ + ⋅ = . 
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Therefore, 

6.3               ( , ) ( , ) ( , ) ( , )uu u ux u v N u v x u v N u v⋅ = − ⋅  

( , ) ( , ) ( , ) ( , )uv u vx u v N u v x u v N u v⋅ = − ⋅  

( , ) ( , ) ( , ) ( , )vu v ux u v N u v x u v N u v⋅ = − ⋅  

( , ) ( , ) ( , ) ( , )vv v vx u v N u v x u v N u v⋅ = − ⋅  

 

Since     , 0ux W⋅ =

0uu u ux W x W⋅ + ⋅ = . 

Therefore, 

6.4                ( , ) ( , ) ( , ) ( , )uu u ux u v W u v x u v W u v⋅ = − ⋅  

  ( , ) ( , ) ( , ) ( , )uv u vx u v W u v x u v W u v⋅ = − ⋅  

 ( , ) ( , ) ( , ) ( , )uv v ux u v W u v x u v W u v⋅ = − ⋅  

 ( , ) ( , ) ( , ) ( , )vv v vx u v W u v x u v W u v⋅ = − ⋅  

 

Since     , 0N W⋅ =
0u uN W N W⋅ + ⋅ = . 

0v vN W N W⋅ + ⋅ =  

Therefore, 
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6.5               ( , ) ( , ) ( , ) ( , )u uN u v W u v N u v W u v⋅ = − ⋅  

( , ) ( , ) ( , ) ( , )v vN u v W u v N u v W u v⋅ = − ⋅  
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7. 

Space-time Surface Equations, 

and Christoffel Curvatures 

Since the Space-time Vector Functions  

uux ,    ,     , uv vux x= vvx

are in , we have Span{ , , , }u vx x N W

7.1   1 2
11 11( , ) ( ) ( )

u u u u

uu u v uu uu

x N x W

x u v x x x N N x W W

− ⋅ − ⋅

= Γ + Γ + ⋅ + ⋅  

7.2   1 2
12 12( , ) ( ) ( )

u v u v

uv u v uv uv

x N x W

x u v x x x N N x W W

− ⋅ − ⋅

= Γ + Γ + + ⋅ + ⋅  

7.3   1 2
21 21( , ) ( ) ( )

v u v u

vu u v vu vu

x N x W

x u v x x x N N x W W

− ⋅ − ⋅

= Γ + Γ + + ⋅ + ⋅  

7.4   1 2
22 22( , ) ( ) ( )

v v v v

vv u v vv vv

x N x W

x u v x x x N N x W W

− ⋅ − ⋅

= Γ + Γ + + ⋅ + ⋅  

where   are  Christoffel Curvatures. k
ijΓ

Since  ,  the equations for , and  

are the same, and    

uv vux∂ = ∂ x ( , )uvx u v ( , )vux u v
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k k
ij jiΓ = Γ . 

The Christoffel Curvatures can be written in terms of the 

Metric Tensor.  Multiplying each equation by , and by ,  ux vx

The First Equation gives 

1
11 122

11

1 2
11 11

( )u u u

g

uu u u u v u

g gx x

x x x x x x

∂ ⋅

⋅ = Γ ⋅ + Γ ⋅ , 

1
12 222

12 11

1 2
11 11

( ) ( )u u v v u u

g g

uu v u v v v

g gx x x x

x x x x x x

∂ ⋅ − ∂ ⋅

⋅ = Γ ⋅ + Γ ⋅ , 

7.5                         

1
11, 122

1
12, 11, 2221

11 2
11 22 12( )

u

u v

g g

g g g

g g g

−
Γ =

−
 

7.6                         

1
11 11,2

1
12 12, 11,22

11 2
11 22 12( )

u

u v

g g

g g g

g g g

−
Γ =

−
 

 

The Second (or Third) Equation gives 

1
11 122

11

1 2
12 12

( )v u u

g

uv u u u v u

g gx x

x x x x x x

∂ ⋅

⋅ = Γ ⋅ + Γ ⋅ , 
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1
12 222

22

1 2
12 12

( )u v v

g

uv v u v v v

g gx x

x x x x x x

∂ ⋅

⋅ = Γ ⋅ + Γ ⋅ , 

7.7                       

1
11, 122

1
22, 2221 1

12 212
11 22 12( )

v

u

g g

g g

g g g
Γ = = Γ

−
 

7.8                       

1
11 11,2

1
12 22,22 2

12 212
11 22 12( )

v

u

g g

g g

g g g
Γ = = Γ

−
 

 

The Fourth Equation gives 

1
11 122

12 22

1 2
22 22

( ) ( )v u v u v v

g g

vv u u u v u

g gx x x x

x x x x x x

∂ ⋅ − ∂ ⋅

⋅ = Γ ⋅ + Γ ⋅ , 

1
12 222

22

1 2
22 22

( )v v v

g

vv v u v v v

g gx x

x x x x x x

∂ ⋅

⋅ = Γ ⋅ + Γ ⋅ , 

7.9                       

1
12, 22, 122

1
22, 2221

22 2
11 22 12( )

v u

v

g g g

g g

g g g

−

Γ =
−
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7.10                      

1
11 12, 22,2

1
12 22,22

22 2
11 22 12( )

v u

v

g g g

g g

g g g

−

Γ =
−
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8. 

Space-time Normals Equations, 

and Curvatures 

Since the Space-time Vector Functions  

uN ,  ,  vN

are in , we have Span{ , , }u vx x W

8.1                   11 12 1( , )u u vN u v x x MW= Ω + Ω +  

8.2                   21 22 2( , )v u vN u v x x M W= Ω + Ω +  

Multiplying each equation by , and by ,  ux vx

The First Equation gives 

11 12

11 12( ) (u u u u v u

g g

N x x x x x⋅ = Ω ⋅ + Ω ⋅ ) 

12 22

11 12( ) (u v u v v v

g g

N x x x x x⋅ = Ω ⋅ + Ω ⋅ )  

8.3                          

12

22
11 2

11 22 12( )

u u

u v

N x g

N x g

g g g

⋅

⋅
Ω =

−
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8.4                          

11

12
12 2

11 22 12( )

u u

u v

g N x

g N x

g g g

⋅

⋅
Ω =

−
 

The Second Equation gives 

11 12

21 22( ) (v u u u v u

g g

N x x x x x⋅ = Ω ⋅ + Ω ⋅ ) 

12 22

21 22( ) (v v u v v v

g g

N x x x x x⋅ = Ω ⋅ + Ω ⋅ ) 

8.5                          

12

22
21 2

11 22 12( )

v u

v v

N x g

N x g

g g g

⋅

⋅
Ω =

−
 

8.6                          

11

12
22 2

11 22 12( )

v u

v v

g N x

g N x

g g g

⋅

⋅
Ω =

−
 

 

Since the Space-time Vector Functions  

uW ,  , vW

are in , we have Span{ , , }u vx x N

8.7                   11 12 1( , )u u vW u v x x M N= Λ + Λ −  

8.8                   21 22 2( , )v u vW u v x x M N= Λ + Λ −  
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The First Equation gives 

11 12

11 12( ) (u u u u v u

g g

W x x x x x⋅ = Λ ⋅ + Λ ⋅ ) 

12 22

11 12( ) (u v u v v v

g g

W x x x x x⋅ = Λ ⋅ + Λ ⋅ )  

8.9                             

12

22
11 2

11 22 12( )

u u

u v

W x g

W x g

g g g

⋅

⋅
Λ =

−
 

8.10                           

11

12
12 2

11 22 12( )

u u

u v

g W x

g W x

g g g

⋅

⋅
Λ =

−
 

The Second Equation gives 

11 12

21 22( ) (v u u u v u

g g

W x x x x x⋅ = Λ ⋅ + Λ ⋅ ) 

12 22

21 22( ) (v v u v v v

g g

W x x x x x⋅ = Λ ⋅ + Λ ⋅ ) 

8.11                            

12

22
21 2

11 22 12( )

v u

v v

W x g

W x g

g g g

⋅

⋅
Λ =

−
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8.12                            

11

12
22 2

11 22 12( )

v u

v v

g W x

g W x

g g g

⋅

⋅
Λ =

−
 

                             

                                  

 

8.13   Differential Equations of a Space-Time Surface 

1 2
11 11
1 2
12 12
1 2
21 21
1 2
22 22

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

u u u uuu

uv u v u v

vu v u v u

vv v v v

u

v

u

v

x N x Wx u v

x u v x N x W

x u v x N x W
x u v x N x W
N u v

N u v

W u v

W u v

⎡ ⎤ Γ Γ − ⋅ − ⋅
⎢ ⎥
⎢ ⎥ Γ Γ − ⋅ − ⋅⎢ ⎥
⎢ ⎥ Γ Γ − ⋅ − ⋅⎢ ⎥
⎢ ⎥

Γ Γ − ⋅ − ⋅⎢ ⎥
=⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11 12

21 22

11 12

21 22

0

0

0

0

u

vv

u

v

u

v

x

x

NN W
WN W

N W

N W

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥Ω Ω ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥Ω Ω ⋅ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
Λ Λ − ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥Λ Λ − ⋅⎣ ⎦
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