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Abstract The Differential Geometry of Space-Time

Curves and surfaces, requires the Cross-Product of 4-
vectors.

A 3-space curve Z(s), parametrized by its arc-length s, is
characterized by two curvature functions «(s), and 7(s). At

each point along Z(s), the Tangent unit vector

T(s) = = 1., ,
( ) ‘5,(8)‘ Z'(s)
and the Normal unit vector
— CZ_’_" S —
N(S) — _)'( ) = 1-.'(8)’
\T (s)\
define the Binormal unit vector
Ioi1
B(s)=TxN=|T, T, T,|.
N, N, Nj
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The Derivatives 7'(s), N'(s), B'(s), in the Frenet Frame, T,
N , B , satisfy the Frenet Differential Equation.

A 4-space curve Z(s), parametrized by its arc-length s, is
characterized by three curvature functions x(s), 7(s), and

w(s). At each point along Z(s), the Tangent unit vector

T(s) = ‘5:"(8)‘ = 15'(5),
and the Normal unit vector
— 7 —
N(s) = ‘;'Ez;‘ = 17,
define the Binormal unit vector
B(s)=TxN,

which is believed to have six components.

Clearly, the Curve Equations cannot be written as a mixture
of 4-vectors, and 6-vectors.

Thus, the Fundamental Differential Equations of Space-time
Curves were not developed.

A 3-space surface Z(u,v), with components along the axes
x,y, 2, 1s parametrized by two linearly independent families
of curves, u, and v.

At each point on Z(u,v), the Tangent Vector along u
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7, (u,0) = 0,3(u,),
and the Tangent Vector along v
z,(u,v) = 0,%(u,v),
define the Normal to the surface,
Z,(u,v) x 2, (u,v) = 1(u,v).
The Derivatives z  (u,v), 7 (u,v) = 2, (u,v), and Z  (u,v) in

the Gauss Frame, 7

u?

z, T, xz, satisfy the Gauss
Differential Equations.
The Derivatives 0, 7, and 0,n in the Gauss Frame satisfy
the Weingarten Differential Equations.
A Space-time surface Z(u,v), with components along the axes
x,y, 2t 1s parametrized by two linearly independent families
of curves, u, and v.
At each point on Z(u,v), the Tangent Vector along u

z,(u,v) = 0,%(u,v),
and the Tangent Vector along v

F,(u,0) = 9,#(u,v),
define the Normal to the surface,

Z,(u,v) x 2, (u,v),

which is believed to have six components.
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Clearly, the Space-time Differential Equations cannot be
written as a mixture of 4-vectors, and 6-vectors.

Thus, the Fundamental Differential Equations of Space-time
Surfaces were not developed.

Recently, we showed that the cross product of 4-vectors is a
4-vector, and supplied the correct formula for it.

Applying this formula to Space-time Vectors, we obtain the
Differential Equations for Space-time Curves, for Space-time

surfaces, and for the Normals to a surface in Space time.

Keywords: Infinitesimal, Infinite-Hyper-real, Hyper-real,

Cardinal, Infinity. Non-Archimedean, Calculus, Limit,
Continuity, Derivative, Integral, Gradient, Divergence, Curl,

Space-time Vectors Fields
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Introduction

0.1 Space-time Curve
A 3-space curve Z(s), parametrized by its arc-length s, is
characterized by two curvature functions «(s), and 7(s). At

each point along Z(s), the Tangent unit vector

T S) = - T—'l 5
(5) ()] T
and the Normal unit vector
R T(s .
N(S) = _"( ) = 1_"(3)’
|7(s)
define the Binormal unit vector
ioi1
B(s)=TxN=|T, T, T,
N, N, Ny

The Derivatives T'(s), N'(s), B'(s), in the Frenet Frame T,

N , é, satisfy the Frenet Differential Equations.

T'(s) 0 w(s) 0 TG)
N'(s)|=|—kr(s) 0  7(s)||N(s)|.
B'(s) 0 —7(s) 0 ||B(s)

The Differential Geometry of Space-time Curves requires the
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Cross-Product of 4-vectors.

A space-time curve Z(s), parametrized by its arc-length s, is
characterized by three curvature functions x(s), 7(s), and

w(s). At each point along Z(s), the Tangent unit vector

- o 2'(s) =
T(S) f— s — 15/“(5),
|'(s)]
and the Normal unit vector
o fﬂ(g) i
N(S) S o 1q'(3)’
T'(s)
define the Binormal unit vector
B(s)=T x N,

provided the cross product of space-time vectors is a space-
time vector.

It is not self evident how the Spatial Cross-Product, with its

— —

1,1

T y?

and Tz components may be generalized to a Space-

time Cross-product with T , 1 ,1 , and 1, components.

A y’ 29

For instance, we can add a column to obtain

I 11 7
A, AA A
B, B, B, B,
T y z

77 77
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but what will be a fourth raw of that 4 x 4 determinant?
It is less evident how the fact that there are six terms of the

form
AB = A sz'

that determine the 4-space Cross Product, lead to the belief
that the 4-Space cross product is six dimensional.

Clearly, the Curve Differential Equations cannot be written
as a mixture of 4-vectors, and 6-vectors.

Thus, the Fundamental Differential Equations of Space-time

Curves were not developed.

0.2 Space-time Surface
A 3-space surface Z(u,v), with components along the axes
z,y, 2, 1s parametrized by two linearly independent families
of curves, u, and v.
At each point on Z(u,v), the Tangent Vector along u
z (u,v) = 0,%(u,v),
and the Tangent Vector along v
z (u,v) = 0,%(u,v),
define the Normal to the surface,

z,(u,v) X T (u,v) = n(u,v).
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The Derivatives z  (u,v), 7 (u,v) = 2, (u,v), and Z  (u,v) in

the Gauss Frame, 7

u?

z,, T, xz, satisfy the Gauss
Differential Equations.
The Derivatives 0,7, and 0,7 in the Gauss Frame satisfy
the Weingarten Differential Equations.
The Differential Geometry of Space-time Surfaces requires
the Cross-Product of 4-vectors.
A Space-time surface Z(u,v), with components along the axes
x,y, 2t 1s parametrized by two linearly independent families
of curves, u, and v.
At each point on Z(u,v), the Tangent Vector along u

z,(u,v) = 0,%(u,v),
and the Tangent Vector along v

z (u,v) = 0,%(u,v),
define the Normal to the surface,

z,(u,v) X T (u,v),

which is believed to have six components.
Clearly, the Surface Differential Equations cannot be

written as a mixture of 4-vectors, and 6-vectors.
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Thus, the Fundamental Differential Equations of Space-time

Surfaces were not developed.

0.3 Correct Space-time Cross Product

Recently, we showed that the cross product of 4-vectors is a
4-vector, and supplied the correct formula for it.

In [Dan4], we showed that the 4-space curl is a 4-vector, and
supplied the correct formula for it. In [Dan5], we obtained
the  Cross-Product of  4-vectors, for space-time
Electromagnetic Vector Fields.

Applying this formula to Space-time Vectors, we obtain the
Differential Equations for Space-time Curves, for Space-time

surfaces, and for the Normals to a surface in Space time.

10
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1.
Curl of 4-Vectors

Let P(z,y,2,t), Q(x,y,2,t), R(x,y,2,t), and S(x,y,2t) be hyper-
real differentiable functions, defined on an infinitesimal area

element dS. dS projects onto six 2-planes generated by

- = o

the unit vectors 1,1 ,1, and T,.

T ) y’ z

h— -

|
—l

X-y projection with area dzdy and normal Tx X Ty Z

—

y-z projection with area dydz and normal Ty X TZ 1

~

—

1

|
=

z-t projection with area dzdt and normal TZ X

~

X

t-x projection with area dtdz and normal Tt X Tw Ty

11
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t-y projection with area dtdy and normal

—

LxI =1 xI)xI =11 -1)-1(I,-1)=1,
1 0

z-X projection with area dzdz and normal

— —

[xI, =0, xI)x, =1 (1 -1)-1,(, -1)=1

The projected areas are
dS, =1 -1 dS = dudt,
dS, =1, -1,dS = dtdy + dzdz,
dS, =1, -1 dS = dudy + dtdy,
S, = 1,-1 dS = dydz
The projections areas are walls of a box with vertex at

Z, Yo, 20, ) and sides dz, dy, dz, and dt.
02 Y0 %0 %

12
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Given positive orientation of a right hand system,

P x? ,Z,t N R
V X ( y 1, j; Pmy,zt 1ldl+Q(:U,y,z,t)1
Q(xayazat dxdy Yy
P(x7 Y Zat) Q(fl?, Y, 2, t) z
Ioayoazovto
Qz,y,21) ) )
\Y4 = , t - Ldl R Y, ,t 1
* | Ria,y,21) tdydz j;)Qxyz 1, - Tdl + R(z,y,2,0)1,
Q($7 Y2, t) R(l', Y, z, t) t
T >Yg, %5t
R(x,y, 2,1t . )
o o | @ 021) 1.1 f (9,2, )1, - Tdl + S(x,y,2 1)1,
S@y,zt)| 7 dzdt )
0, ) .
pu— 1 )
R($7 Y, Z,t) S(CU, Y, z, t) z
oY %0t
S(.’,I?, Y, Zat) - 1
=1, — t 1 dl + P 1)1
v P(z,y,z,t)| Y dtd 99 (29,2, 1)1, + P(,y,21)],
( S,)
—= at 8~T -
S($7 Y, Zat) P(CU, Y, z, t) Yy
Zy:Y0 201
S(:c,y,z, t) - 1 . ~
V x =1 — (2,9, 2, t)l Ldl + Q(z,y,2,t)1
Q(xv Y, z, t) d ai ) ! Yy

13

-1dl,

1dl,

-1dl,

Tdl,

1dl,
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2, ) )

— Yy 1

S(.’E, Y, Z,t) Q(xa Y, 2, t) ‘

Ty,Yp+20-tp
v Pla,y,21) 1 P( 1 -1dl+R )1, - 1,di
X =
R(z,y,2,t) y dzd:l: 99 (29,2, + Ry ) ’
ax az

1
Y
T,Y0>%0 o

P(x,y,2,t) R(z,y,2,t)

The 4-space Curl is the sum of the six area curls. That is,

_P(x,y,z,t)
T, Y, 2, t
- Qz,y.2,1)| _
R(z,y,2,t)
S(z,y,2,1)
V R +V S +V P +V P +V S +V @
-V X X X X X X
S P R Q Q R
9. 'atT‘ ) vazi‘ o, vazi o, 'ayi‘ 1, va”‘ ‘ay vazil
R sl |s plv |p Rl |P ol |s ol l|o R|"
Sz_Rt

Pt_Sm—{_R:c_Pz
Q-5 +0Q -5,
R - Q.

14



Gauge Institute Journal, H. Vic Dannon

2.

Cross-Product of 4-Vectors

2.1 The Cross-product of 4-vectors is the sum of six cross-

products of 2-vectors, That is,

Al 1B [A] [B.] [A] [B] [A] |B,
X = X X X
A BT A B A B | T A BT
At BLL | Az At g | | At AT 37 | A:l: VAz 7
_ _ _ Bz Bt lm Bt BT 1‘1/ BT Bz 1?/
AL AL B AL
X X X
4,018, |4, (B, |A] B,
4, Al 4, Al A Al
B, By L B, By ? By B, L
Az At
Bz B t
At A:v Ax Az
4, Al A A
z Y + Y
B, B/| |B, B
z Y Y
A A
B, B,

15
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2.2 Ix1 =1,
[, x1, =1,
[ x1, =1
[ xI, =1
1] [0
P ANEI UM A AyT 10
Broof: x4, =151%|o| = |5, B|" |0 1
0| [0
2.3 AxB=-BxA
2.4 Ax(BxC)=(A-C)B—(A-B)C
Proof: L x(1,x1)=1x1 =1
(L, -1)L, —(1,- 1)1 =1,

H. Vic Dannon

2.5 is = A'(s)- B(s) + A(s)- B'(s)
T{A(s) % Blo)} = A0s) x Bis) + Als) x B'(5)

16



Gauge Institute Journal, H. Vic Dannon

3.

Space-time Curve Frame

Let Z(s) be a Curve parametrized by its arc-length s,

with continuous linearly independent derivative functions,

S dz(s)
z'(s) = ,
(s) ]

2—
7"(s) = d-7(s) ,
ds’
3—)
Z"(s) = d x(s)’
ds>
7M(s) = d4£(5)
ds*

17
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3.2 T'(s) L T(s)

T'(s) is Normal to the Tangent.

Proof: T(s)-T(s) =1,
T'(s)-T(s)+ T(s)-T'(s) = 0,

3.3 The Normal unit vector at s

3.4 The Curvature of Z(s) at s

3.5 The First Frenet Equation

3.6 The Bi-Normal unit vector at s

— —

B(s) = T(s) x N(s)

18

H. Vic Dannon
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3.7 The Tri-Normal unit vector at s

3.10 T”, and N span the Osculating (=Tangent) Plane

Span{T,N} = {\T + uN : \,u € R}

3.11 N,and B span the Normal Plane

Span{N,B} = {AN + uB : \,u € R}

3.12 B,and W span the Bi-Normal Plane

Span{B,W} = {AB + uW : \,u € R}

3.13 W,and T span the Tri-Normal Plane

Span{W,T} = {AW + uT : A\, € R}

19
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4.

Space-time Curve Equations

The Vector Functions

are in
Span{T'(s),N(s), B(s), W(s)}
From 3.2,
4.1 T'(s) L T(s), and
T'(s) has no component along T(s).
Similarly,
4.2 N'(s) L N(s), and

N'(s) has no component along N(s),
B'(s) L B(s), and

B'(s) has no component along B(s),
W'(s) L W(s), and

W '(s) has no component along W(s).

20
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By 3.3, T'(s) only component is along N(s). That is,

4.3  T'(s) has no component along B(s),

T'(s) has no component along W(s),

—

T'(s)-W(s) = 0|.

T'(s) has no component along T(s),

Similarly, we obtain the Differential Equations for N'(s),

B'(s), and W'(s).

4.4 The component of N'(s) along T(s) is

Proof: N.-T = 0,
N'(s)-T(s)+ N(s)- T'(s) = 0.0
H_'_J
/@(S)N(s}

21
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4.5 The component of N'(s) along B(s) is

Proof:

4.6 The Bi-Curvature (=Torsion) of Z(s) at s

7(s) = N'(s)- B(s)

4.7 The component of N '(s) along W(s) is

N'(s)-W(s) = 0.

Proof: By the Schmidt Orthogonalization Process

T =2z,
R il
N = m € Span{a_f',a_f"},
T
SM_ (W PN (2 AT N
T ($ 1:)7: (f ZY’)_' c Span{f',f”,f”‘},
gn— (z"T)T — (" N)N‘

N'e Span{z',z2",2"} = Span{T,N, B},

The projection of N' on W is zero.]

22

H. Vic Dannon
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4.8

4.9

Proof:

4.10

Proof:

4.11

Proof:

The Differential Equation for N'(s)

N'(s) = —w(s)T(s) + (s)B(s)],

The component of B'(s) along T(s) is

B'(s)-T(s) = 0|.
B-T =0,
B"T+B-T'=0.0

T'.B=0

The component of B'(s) along N(s) is

The component of B'(s) along W(s) is

B'(s)- W(s) = —W'(s) - B(s).

B(s)-W(s) =0,

23

H. Vic Dannon
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B'W+B-W'=0.0

—_—

W'B

4.12 The Tri-Curvature of Z(s) at s

w(s) = B'(s)- W(s)

4.13 The Differential Equation for B'(s)

— —

B'(s) = —7(s)N(s) + w(s)W(s)

4.14 The component of W'(s) along T(s) is

Proof: W.-T =0

4.15  The component of W '(s) along N(s) is

Proof: 1/17(3) : N(s) =0,
_|_

24

H. Vic Dannon
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4.16 The component of W '(s) along B(s) is

—

W'(s) - B(s) = —w(s).

Proof: W(s)- B(s) =0,
W.B+ W-B' =0.0
B'"W=uw(s)

4.17 The Differential Equation for I (s)

4.18 The Space-time Curve Differential Equations

T'(s) 0 k() 0 0 ]| 7(s)
N'(s)| |-a(s) 0  7(s) O |[N(s)
B's)| | 0 —1(s) 0  w(s)|| B(s)
W(s) 0 0 —ws) 0 |W(s)

25
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.

Space-Time Surface Frame

Let Z(u,v) be a Space-time Surface Patch parametrized by

two linearly independent families of curves, u, and v,

Z(u,v) =

with continuously differentiable partial derivatives of any

necessary order.

5.1 Tangent along the u-Curves

At each point on Z(u,v), the Tangent Vector along u is

z,(u,v) = 0,%(u,v)|,

and the Unit Tangent Vector along u is

- 0,%(u,v)

15 — -
7 0,%(u,v)

26
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5.2 Tangent along the v-Curves

At each point on Z(u,v), the Tangent Vector along v is

Z,(u,v) = 0,%(u,v)|,

and the Unit Tangent Vector along v is

T 0,%(u,v)
Lo 0,%(u,v)

5.3 The Metric Tensor at (u,v)

_ 'Tu ) 'Tu xu ) xi}
x’U xu v CUU

5.4 The Inverse Metric Tensor at (u,v)

T, T, —X T

(gz‘j )_1(U7 U) =

5.5 Area of parallelogram generated by 7 , and 7,

Area(Z,T,)) = |7, X T,

T
‘xu X %‘ = det(gij) = 911922 — (912>2

T, X 1T, ‘2 expanded into its components by 2.1, equals

Proof:

27
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911995 — (9,,)° expanded into components.[]

5.6 The Normal Unit Vector at (u,v)

- T XZT - T XTI
Nuo) = oty = 1, = i
u v \/911922 —(915)

5.7 The Bi-Normal Unit Vector at (u,v)

—

B(u,v) = If x N(u,v)

-

5.8 B(u,v) is in the Tangent Plane
Span{Z,,Z,} = {\Z, + uZ, : A, € R}.

Proof: B(u,v) is normal to N(u,v).0]

5.10 The Tri-Normal unit vector at (u,v)

— — —

W(u,v) = N(u,v) x B(u,v)

5.11 {Tf ,]V , E’, W} is an Orthonormal Vector System

N(u,v) x B(u,v) = Tf (u,v)

28
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5.12 Ti: , and T:z-‘ span the Tangent Plane

Span{ffu,ffﬂ} = {)xffu + ,uifﬂ : A\ p € R}

29
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6.

Space-time Surface Curvatures

Since N-N:I,

Thus,
6.1 Nu(u,v) = 8uﬁ L N(u,v), and
]\7u (u,v) has no component along N(u,v),
Nv(u,v) 1 N(u,v), and
N@ (u,v) has no component along N(u,v),
Similarly,
6.2 Wu(u, v) L W(u,v), and
Wu(u, v) has no component along W(u,v),

W (u,v) L W(u,v), and

V[71)(u, v) has no component along W(u,v),

30
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Therefore,
6.3 z,, (uv)- N(u,v) = -z, (u,v) - Nu(u, v)
z,,(u,v) N(u,v) = -z, (u,v) - Nv(u, v)
7, (1,0) - N(u,0) = =7, (u,0) - N, (w,0)
Z,(u,0) - N(u,0) = =7, (u,0) - N, (u,0)
Since I, W = 0,
i W+, -W, =0.
Therefore,
6.4 Z(u,0)- W(u,v) = —Z, (u,0) - W, (u,)
Z (u,v) W(u,v) = -z, (u,v) - Wv(u, v)
Z (u,0) W(u,v) = -z, (u,v) - _'u(u, v)
Z, (u,v) - W(u,v) = =&, (u,v) - W, (u,0)
Since N -W = s
N, -W+N-W, =0.
NN, =0
Therefore,

31
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— —

6.5 Nu(u, v) - W(u,v) = —N(u,v) - ' (u,)

—

N (u,v)- W(u,v) = —N(u,v) - V[Z(u, v)

v

32
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7.
Space-time Surface Equations,

and Christoffel Curvatures

Since the Space-time Vector Functions

— — —

z
- ou?

un? xuv v ?

are in Span{z_,7 ,N,W}, we have

- — —

71 (7, (uv)=TL2 +T%7 + (2, -N)N+(Z, -W)W
e

7.2 (7, (u,v) = T3, + 122 ++(Z, - N)N + (2, - W)W
—

7.3 |z, (uv)=TL2 + 122 ++(&, -N)N+ (T, - W)W
R —

7.4 |7 (u0) = TLZ, +T%% ++(Z, - N)N +(Z,, - W)W
;_,,T_/

where I/ are Christoffel Curvatures.
Since 0,7 = 0,7, the equations for Z (u,v), and %, (u,v)

are the same, and

33
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ko Tk
rt =1k
The Christoffel Curvatures can be written in terms of the

Metric Tensor. Multiplying each equation by Z , and by Z,

The First Equation gives

— — _ 1 = . — 2 - . —
xuu Ty T F11'7"u xu +F11xv xu’
[ — [Eh—}
%au(_'u'_'u) gll 912
N
911
— — _ 1 = . — 2 - —
uu'xv _Fllxu xv—J’_Fllxv 'Tv’
—_—
811(fu,'fv)_%av(_'u'_)u) 912 922
912 911
1
5 1 912
_1
1 920 T 9910 922
7.5 Tl = 2
911929 — (919)
1
In 5 911,u
1
912 G124 — 59110
7.6 2 = i
911999 — (919)

The Second (or Third) Equation gives

— — . 1 - . — 2 - . —
xuv ’ xu - I‘12 xu xu + F12 xv xu ’
%81}(:%’“-5“) 911 D)

911

34



Gauge Institute Journal, H. Vic Dannon

— — . 1 - . — 2 - . —
xuv x’u - I‘12 xu xv + F12 xv xv’
50,(%,%,) 912 922
o)
922
1
5 9110 Y12
1
59204 Y929
1.7 F12 = 2= - F§1
—(g15)°
911922 P
1
g1 5 %110
1
912 5922,
7.8 F%2 - — - F§1
—(g15)°
911922 912
The Fourth Equation gives
T -7 =Tl 2z .2 +T2 2 -7
VU U 22 “u u 22 v u
[ — —_— ——
au(fu'fv)_éau(fu'ﬁv) 911 Y912
912 922
— — . 1 - . — 2 - . —
w v T F22xu xv +F22xv xv’
%av(_’v'_’v) 912 922
o)
922
_ 1
120 ~ 59224 Y12
1
5 Y9224 929
7.9 rl, = 2%
—(g15)"
911922 910

35
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_1
911 G120 T 59224

1
912 5 9220

2
911920 — (915)

7.10 r2, =
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8.
Space-time Normals Equations,

and Curvatures

Since the Space-time Vector Functions

N, N,

U v

are in Span{z_,z ,W}, we have

8.1 N (u,0) = Q. %, + Q,7, + MW
8.2 Nv(u, v) = 0y, %, + Q50T + M2VI7

Multiplying each equation by Z , and by 7,

The First Equation gives

N ) 'fu - Q11(3_5u ) fu) + QIQ('%U ’ fu)
e —— e

U

911 912

N, Z, =0, %)+ 2,3, 7,
S ——

U v

—_—
912 922
Nu ’ a_fu 912
N,-Z, g
8.3 0, = =
9
911920 — (912)
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gll Nu ’ _‘u
912 u fv
8.4 Q, =

2
911920 — (919)

The Second Equation gives

N ) fu - QQl(fu ) fu> + Q22(5’U ’ fu)
—_— —_—

v

911 D)
Nv ’ fv — QQlcfu ) fv) + QQQ(E’:U ) 'i:v)
— —
912 922
Nv ) fu 912
N,-Z, g
8.5 0, = —!
911922 — (915)
gll Nv ’ _'u
g T
8.6 Q22 _ 12 v v2
911922 — (915)

Since the Space-time Vector Functions

— —

W, W,
are in Span{z 7, N}, we have

8.7 W (u,0) = AT, + AT, — M,N
8.8 W (u,0) = Ay 2, + Ay, 2, — M,N
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The First Equation gives

W

u

911

—

W -z

u v

912

S

=
W, -z
.

w .

(7 v

912
999

Kl

o 2
911920 — (915)

8.9

911 "Iy,
e

o 2
911922 — (915)

S S

8|

v

8.10 Ay,

The Second Equation gives

W, I, = My (T, - Z,) + Ap(T

911

W, -z

v

912

) fu - All(fu ’ 'i:u> + A12('i:v
————

- All(fu ) fv) + AlQ(fv
—_—

- AQl(fu ) fv) + AQQ('%U ) xv)
—_— —_—

S

919

Wv' v 922

)

A21

8.11

o 2
911922 — (912)
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8.13 Differential Equations of a Space-Time Surface
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