The Compton Radius of Quanta

H. Vic Dannon vic0user@gmail.com March, 2025

Abstract

The Classical Radius of the proton, and the electron are based on flawed assumptions.

We have seen¹ that the Classical Electron Radius and the Classical Proton Radius lead to non-credible conclusions.

The Compton Radius is better approximation to the radius of quanta.

	mass	Compton Radius
Electron	$9.10938356 \times 10^{-31}$ kg	$3.38615926 \times 10^{-13} \mathrm{m}$
Proton	$1.6672629 \times 10^{-27} \mathrm{kg}$	$1.834322459 \times 10^{-16} \mathrm{m}$
U Quark	2.2MeV	$10^{-30}\mathrm{m}$
D Quark	4.7MeV	$0.468 \times 10^{-30} \mathrm{m}$
$ u_e $ Neutrino	$0.12\mathrm{eV}$	1.667×10^{-23} m

¹ H. Vic Dannon The Electric Forces within the Compton Radii of the Proton, and the Electron are Very Strong

Contents

- 1. The Electron Classical Radius versus its Compton Radius
- 2. The Proton Classical Radius versus its Compton Radius
- 3. The **u** quark Compton Radius
- 4. The **d** quark Compton Radius
- 5. The electron-neutrino Compton Radius

References

The Electron Classical Radius versus its Compton Radius

The potential electric energy contained in an electron with radius $\it r_{e}$ is

$$\frac{1}{4\pi\varepsilon_0}\frac{e^2}{r_e}.$$

The electromagnetic energy contained in an electron with mass $\,m_e\,$ is

$$m_e c^2$$
.

Assuming equality

$$\frac{1}{4\pi\varepsilon_0}\frac{e^2}{r_e}=m_ec^2,$$

$$r_{e}=\frac{1}{4\pi\varepsilon_{0}}\frac{e^{2}}{m_{e}c^{2}},$$

Using PDG values,

$$= \frac{1}{4\pi} \frac{1}{8.854187817 \times 10^{-12}} \frac{(1.6021766208 \times 10^{-19})^2}{(9.10938356 \times 10^{-31})(2.99792458 \cdot 10^8)^2}$$
$$= 2.920970413 \times 10^{-15}$$

The assumption that the electric potential energy contained in an electron with radius r_e equals the electromagnetic energy contained in its mass m_e is not self evident.

It ignores other possible energies such as rotational, kinetic, and magnetic.

And it is inconsistent with the nature of radiation as photons with energy

$$h
u_e = h rac{c}{\lambda_e}$$
 .

Thus, we replace the electron with a photon with Compton wavelength

 $\lambda_{e} = 2\pi r_{e}$.

Then,

$$m_e c^2 = h \frac{c}{2\pi r_e},$$

And Compton Radius of the electron is

$$\begin{split} r_e &= \frac{h}{2\pi m_e c} \\ &= \frac{6.626070040 \times 10^{-34}}{(2\pi)9.10938356 \times 10^{-31} 2.99792458 \times 10^8} \\ &= 3.38615926 \times 10^{-13} \end{split}$$

More than 100 times larger than the Classical Electron Radius.

We have seen² that the Classical Electron Radius and the Classical Proton Radius lead to non-credible conclusions.

² H. Vic Dannon: <u>The Electric Forces within the Compton Radii of the Proton</u>, and the Electron are Very Strong

The Proton Classical Radius versus its Compton Radius

The potential electric energy contained in a proton with radius r_p is

$$\frac{1}{4\pi\varepsilon_0}\frac{e^2}{r_p}.$$

The electromagnetic energy contained in a proton with mass m_p is

$$m_p c^2$$
.

Assuming equality

$$\frac{1}{4\pi\varepsilon_0}\frac{e^2}{r_p} = m_p c^2,$$

$$r_p = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{m_p c^2},$$

$$=\frac{1}{4\pi\varepsilon_0}\frac{e^2}{(1846m_e)c^2}$$

$$= \frac{1}{1846} 2.920970413 \times 10^{-15}$$
$$= 1.582324167 \times 10^{-18}$$

The assumption that the electric potential energy contained in a proton with radius $\,r_{\!p}\,$ equals the electromagnetic energy contained in its mass $\,m_{\!p}\,$ is not self-evident.

It ignores other possible energies such as rotational, kinetic, and magnetic.

And it is inconsistent with the nature of radiation as photons with energy

$$h
u_p = h rac{c}{\lambda_p}.$$

Thus, we replace the proton with a photon with Compton wavelength

$$\lambda_p = 2\pi r_p \,.$$

Then,

$$m_p c^2 = h \frac{c}{2\pi r_p},$$

And Compton Radius of the proton is

$$\begin{split} r_p &= \frac{h}{2\pi m_p c} \\ r_p &= \frac{h}{2\pi (1846m_e)c} \\ &= \frac{r_e}{1846} \\ &= \frac{1}{1846} 3.38615926 \times 10^{-13} \\ &= 1.834322459 \times 10^{-16} \end{split}$$

More than 100 times larger than the Classical Proton Radius.

We have seen³ that the Classical Electron Radius and the Classical Proton Radius lead to non-credible conclusions.

³ H. Vic Dannon: <u>The Electric Forces within the Compton Radii of the Proton,</u> and the Electron are Very Strong

The u quark Compton Radius

we replace the u quark with charge $\frac{2}{3}e^+$ with a photon with Compton wavelength

$$\lambda_u = 2\pi r_u$$
.

Then,

$$m_u c^2 = h \frac{c}{2\pi r_u},$$

And Compton Radius of the u quark is

$$r_{\!\!u} = \frac{h}{2\pi m_{\!\!u} c}$$

$$r_{u} = \frac{\frac{h}{2\pi} MeV}{(m_{u} MeV)c}$$

$$= \frac{6.582119514 \times 10^{-22} MeV}{(2.2 MeV)(2.99792458) \cdot 10^8}$$
$$\approx 10^{-30} \text{m}$$

The d quark Compton Radius

we replace the d quark with charge $\frac{1}{3}e^-$ with a photon with Compton wavelength

$$\lambda_d = 2\pi r_d$$
.

Then,

$$m_d c^2 = h \frac{c}{2\pi r_d},$$

And Compton Radius of the d quark is

$$r_{\!d} = \frac{h}{2\pi m_{\!d} c}$$

$$r_{\!\scriptscriptstyle d} = \frac{\frac{h}{2\pi} MeV}{(m_{\!\scriptscriptstyle d} MeV)c}$$

$$= \frac{6.582119514 \times 10^{-22} MeV}{(4.7 MeV)(2.99792458) \cdot 10^8}$$
$$\approx (0.468)10^{-30} m$$

The ν_e neutrino Compton

Radius

we replace the $\,\nu_e^{}\,$ neutrino with a photon with Compton wavelength

$$\lambda_{\nu_e} = 2\pi r_{\nu_e}.$$

Then,

$$m_{\nu_e} c^2 = h \frac{c}{2\pi r_{\nu_e}},$$

And Compton Radius of the ν_e neutrino is

$$r_{\!\nu_e} = \frac{h}{2\pi m_{\!\nu_e} c}$$

$$\begin{split} r_{\nu_e} &= \frac{\frac{h}{2\pi} MeV}{(m_{\nu_e} MeV)c} \\ &= \frac{6.582119514 \times 10^{-22} 10^6 eV}{(0.12 eV)(2.99792458) \cdot 10^8} \\ &\approx 1.667 \times 10^{-23} \mathrm{m} \end{split}$$

References

[<u>Dannon</u>] H. Vic Dannon: "<u>The Electric Forces within the Compton Radii of the Proton, and the Electron are Very Strong"</u>

[PDG] Particle Data Group, 2016 Particle Physics Booklet.

https://en.wikipedia.org/wiki/Proton

https://en.wikipedia.org/wiki/Classical_electron_radius

https://en.wikipedia.org/wiki/Electron

https://en.wikipedia.org/wiki/Planck_constant

https://en.wikipedia.org/wiki/Compton_wavelength#Relation

ship_to_other_constants

https://en.wikipedia.org/wiki/Quark

https://en.wikipedia.org/wiki/Neutrino#Properties_and_react

ions