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Introduction 

Intense electromagnetic pulses can serve as bullets that demolish 

matter.   Such pulses have been used as scalpels in surgery [W-4], 

and as shells by the military to shoot down missiles [W-5]. 

While dissipation is not a concern for surgical pulses, it requires 

that the military pulses be very powerful pulses in order for them 

to be effective on a remote target. 

In [Dan10], we showed that the Fundamental Optical Soliton can 

be considered a Delta Function, and here we will show that the 

model that serves to describe its propagation, guarantees no 

dissipation. 

The Delta Function is not the limit of a Delta sequence as 

presented in Engineering, and in Physics, and its singularity does 

not disappear when it is presented as a  Generalized Functional in 

Mathematics. 

We have shown that the Delta Function is a Hyper-real Function 

defined on the hyper-real line, an infinite dimensional line that 

has room for infinitesimals, and their reciprocals, the infinite 

hyper-reals.   

In the next sections, we sum up the main points necessary for the 

definition, and the application of the Delta function 
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1.  

Hyper-real Line 
Each real number α  can be represented by a Cauchy sequence of 

rational numbers,  so that .    1 2 3( , , ,...)r r r nr α→

The constant sequence (  is a constant hyper-real. , , ,...)α α α

In [Dan2] we established that,  

1. Any  totally ordered set of positive, monotonically decreasing 

to zero sequences  constitutes a family of 

infinitesimal hyper-reals.  

1 2 3( , , ,...)ι ι ι

2. The  infinitesimals are smaller than any real number, yet 

strictly greater than zero. 

3. Their reciprocals (
1 2 3

1 1 1, , ,...
ι ι ι ) are the infinite hyper-reals. 

4. The infinite hyper-reals are greater than any real number, 

yet strictly smaller than infinity. 

5.  The infinite hyper-reals with negative signs are smaller 

than any real number, yet strictly greater than −∞ . 

6. The sum of a real number with an infinitesimal is a 

   non-constant hyper-real. 

7. The Hyper-reals are the totality of constant hyper-reals, a 

family of infinitesimals, a family of infinitesimals with 
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negative sign, a family of infinite hyper-reals, a family of 

infinite hyper-reals with negative sign, and non-constant 

hyper-reals. 

8.  The hyper-reals are totally ordered, and aligned along a 

line: the Hyper-real Line. 

9. That line includes the real numbers separated by the non-

constant hyper-reals. Each real number is the center of an 

interval of hyper-reals, that includes no other real number. 

10. In particular, zero is separated from any positive real 

by the infinitesimals, and from any negative real by the 

infinitesimals with negative signs, . dx−

11.  Zero is not an infinitesimal, because zero is not strictly 

greater than zero. 

12. We do not add infinity to the hyper-real line. 

13. The infinitesimals, the infinitesimals with negative 

signs, the infinite hyper-reals, and the infinite hyper-reals 

with negative signs are semi-groups with 

     respect to addition. Neither set includes zero. 

14. The hyper-real line is embedded in , and is not 

homeomorphic to the real line. There is no bi-continuous 

one-one mapping from the hyper-real onto the real line. 

∞

15. In particular, there are no points on the real line that 

can be assigned uniquely to the infinitesimal hyper-reals, or 
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to the infinite hyper-reals, or to the non-constant hyper-

reals. 

16. No neighbourhood of a hyper-real is homeomorphic to 

an  ball.   Therefore, the hyper-real line is not a manifold. n

17. The hyper-real line is totally ordered like a line, but it 

is not spanned by one element, and it is not one-dimensional. 
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2. 

Hyper-Real Integral   

In [Dan3], we defined the integral of a Hyper-real Function. 

Let ( )f x  be a hyper-real function on the interval [ , . ]a b

The interval may not be bounded. 

( )f x  may take infinite hyper-real values, and need not be 

bounded. 

At each  

a x≤ ≤ b , 

there is a rectangle with base 
2

[ ,dx dxx x− +
2
], height ( )f x , and area  

( )f x dx . 

We form the Integration Sum of all the areas for the x ’s that 

start at x , and end at x b , a= =

[ , ]

( )
x a b

f x dx
∈
∑ . 

If for any infinitesimal dx , the Integration Sum has the same 

hyper-real value, then ( )f x  is integrable over the interval [ , .  ]a b

Then, we call the Integration Sum the integral of ( )f x  from , 

to x , and denote it by 

x a=

b=

( )
x b

x a

f x dx
=

=
∫ . 
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If the hyper-real is infinite, then it is the integral over  [ , , ]a b

If the hyper-real is finite,  

( )  real part of the hyper-real
x b

x a

f x dx
=

=

=∫ .  

 

2.1   The countability of the Integration Sum 

In [Dan1], we established the equality of all positive infinities: 

We proved that the number of the Natural Numbers,  

Card , equals the number of Real Numbers, ,  and 

we have 

2CardCard =

2 2( ) .... 2 2 ...
CardCardCard Card= = = = = ≡ ∞ . 

In particular, we demonstrated that the real numbers may be 

well-ordered.  

Consequently, there are countably many real numbers in the 

interval [ , , and the Integration Sum has countably many terms. ]a b

While we do not sequence the real numbers in the interval, the 

summation takes place over countably many ( )f x dx . 

 

The Lower Integral is the Integration Sum where ( )f x  is replaced 

by its lowest value on each interval  
2 2

[ ,dx dxx x− + ] 
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2.2                              
2 2[ , ]

inf ( )
dx dxx t xx a b

f t dx
− ≤ ≤ +∈

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑  

  

The Upper Integral is the Integration Sum where ( )f x  is replaced 

by its largest value on each interval  
2 2

[ ,dx dxx x− + ] 

2.3                                
2 2[ , ]

sup ( )
dx dxx t xx a b

f t dx
− ≤ ≤ +∈

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∑  

 

If the integral  is a finite hyper-real, we have 

2.4  A hyper-real function has a finite integral if and only if its 

upper integral and its lower integral are finite, and differ by an  

infinitesimal. 
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3. 

Delta Function   
In [Dan5], we defined the Delta Function, and established its 

properties 

1. The Delta Function is a hyper-real function defined from the 

hyper-real line into the set of two hyper-reals 
1

0,
dx

⎧ ⎫⎪⎪⎨⎪ ⎪⎪ ⎪⎩ ⎭

⎪⎪⎬.  The 

hyper-real  is the sequence  0 0,0, 0,... .  The infinite hyper-

real  1
dx

 depends on our choice of dx .   

2. We will usually choose the family of infinitesimals that is 

spanned by the sequences 
1
n

,
2

1

n
,

3

1

n
,… It is a 

semigroup with respect to vector addition, and includes all 

the scalar multiples of the generating sequences that are 

non-zero. That is, the family includes infinitesimals with 

negative sign.   Therefore,  1
dx

  will mean the sequence n .  

Alternatively, we may choose the family spanned by the 

sequences 
1

2n
,

1

3n
,

1

4n
,… Then, 1

dx
  will mean the 

sequence 2n .   Once we determined the basic infinitesimal 
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dx , we will use it in the Infinite Riemann Sum that defines 

an Integral in Infinitesimal Calculus.  

3. The Delta Function is strictly smaller than ∞  

4. We define,    
2 2
,

1
( ) ( )dx dxx x

dx
δ χ⎡ ⎤−⎢ ⎥⎣ ⎦

≡ ,    

             where   
2 2

2 2
,

1, ,
( )

0, otherwise
dx dx

dx dxx
xχ⎡ ⎤−⎢ ⎥⎣ ⎦

⎧ ⎡ ⎤⎪ ∈ −⎢ ⎥⎪ ⎣ ⎦= ⎨⎪⎪⎩
. 

5. Hence,  

 for ,   0x < ( ) 0xδ =

 at 
2
dx

x = − ,   jumps from   to ( )xδ 0
1
dx

,  

 for     
2 2

,dx dxx ⎡ ⎤∈ −⎢ ⎥⎣ ⎦ ,   
1

( )x
dx

δ = . 

 at   ,     0x =
1

(0)
dx

δ =  

 at  
2
dx

x = ,   drops from ( )xδ
1
dx

 to . 0

 for ,  . 0x > ( ) 0xδ =

  ( ) 0x xδ =

6. If 1
n

dx = ,  1 1 1 1 1 1
2 2 4 4 6 6

[ , ] [ , ] [ , ]( ) ( ),2 ( ), 3 ( )...x x xδ χ χ χ− − −= x  

7.  If 2
n

dx = ,  
2 2 2

1 2 3
( ) , , ,...

2 cosh 2cosh 2 2cosh 3
x

x x x
δ =  

8. If 1
n

dx = ,  2 3
[0, ) [0, ) [0, )( ) ,2 , 3 ,...x x xx e e eδ χ χ χ− − −

∞ ∞ ∞=  
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9.         . ( ) 1
x

x

x dxδ
=∞

=−∞

=∫
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4. 

The Fourier Transform 

In [Dan6], we defined the Fourier Transform and established its 

properties 

1.    { }( ) 1xδ =F

2.  =  the inverse Fourier Transform of the unit function 1  ( )xδ

                   1
2

i xe d
ω

ω

ω

ω
π

=∞

=−∞

= ∫  

                   ,            2 ixe d
ν

π

ν

ν
=∞

=−∞

= ∫ 2ω π= ν

3. 
0

1
2

i x

x

e d
dx

ω
ω

ω

ω
π

=∞

=−∞ =

=∫
1

=  an infinite hyper-real 

                    
0

0i x

x

e d
ω

ω

ω

ω
=∞

=−∞ ≠

=∫  

4. Fourier Integral Theorem 

     1
( ) ( )

2

k
ik ikx

k

f x f e
ξ

ξ

ξ

ξ ξ
π

=∞ =∞
−

=−∞ =−∞

⎛ ⎞⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∫ ∫ d e dk   

     does not hold in the Calculus of Limits, under any  

     conditions.  
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5. Fourier Integral Theorem in Infinitesimal Calculus      

         If ( )f x  is hyper-real function, 

         Then,  

 the Fourier Integral Theorem holds. 

 ( )
x

i x

x

f x e dxα
=∞

−

=−∞
∫  converges to  ( )F α

 1
( )

2
i xF e d

α
α

α

α
π

=∞
−

=−∞
∫ α  converges to ( )f x  
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5. 

The Laplace Transform   

 

In [Dan7], we have shown that 

1. The Delta function , for  is represented by Sequence  

. 

( )tδ 0t ≥

[0, )
( ) ( )nt
n t ne tδ χ

∞

−=

2. If 1
ni n
= ,   

[0, ) [0, ) [0, )

2 3( ) ( ),2 ( ), 3 ( ),...t t tx e t e t e tδ χ χ χ
∞ ∞ ∞

− − −=     

3.  { }( ) 1tδ =L

4.   the inverse Laplace Transform of the unit function 1  ( )tδ =

                 1
2

s i
st

s i

e ds
iπ

= ∞

=− ∞

= ∫ . 

5. 
0

1
2

s i
st

s i t

e ds
i d

γ

γ
π

= + ∞

= − ∞ =

=∫
1
t
=  an infinite hyper-real 

               
0

0
s i

st

s i t

e ds
γ

γ

= + ∞

= − ∞ ≠

=∫ . 

6. Laplace Integral Theorem 

     If ( )f t  is hyper-real function, 

          Then,  

 the Laplace Integral Theorem holds. 
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0

1
( ) ( )

2

s i
st s

s i

f t e e f
i

γ τ
τ

γ τ

τ τ
π

= + ∞ =∞
−

= − ∞ =

⎛ ⎞⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∫ ∫ d ds  

  , converges to  
0

( )
t

st

t

e f t dt
=∞

−

=
∫ ( )F s

  1
( )

2

s i
st

s i

e F s ds
i

γ

γ
π

= + ∞

= − ∞
∫  converges to ( )f t . 
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6. 

Optical Catastrophe Model for the 

Free Electron Laser Pulses 
 

In the Free electron Laser [W-5], an electron beam accelerated to 

almost light speed, is forced into a wiggling sinusoidal path by a 

transverse magnetic field with alternating poles.  

The radiation is coherent, in wavelengths ranging from 

microwaves to X-rays.   

Since X-rays penetrate mirrors, the Free Electron Laser operates 

without mirrors, hence without an oscillator, and the pulse has to 

be created in a single pass of the beam.  

The emitted power increases as coherence increases, but the pulse 

does not shape as a Soliton, and as it propagates in the z  

direction, it is subject to broadening, and loss.  

We shall approximate it by a Gaussian Pulse.  

Thus, [e.g. Ghatak], its power is proportional to 

 

( )

2
2

14 2 2
2

2
( )2

1
4 2 2 2

2

t

t

t z
zt

t

e

z

σ
β

σ βσ

σ β

−
−

+

+
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where  

tσ  is the width of the pulse, 

0
0

1
0E

ω ωωβ β =
=

= ∂  is the dispersion coefficient in the air  

0
0

2
2

0E
ω ωωβ β =

=
= ∂  is the second dispersion coefficient in the air. 

Thus, the pulse power decays with the distance z . 

Furthermore, the radiation from the electron beam disperses on 

the surface of a radially expanding cylinder. 

 

 

 

 

 

 18



7.  

Optical Catastrophe Model for 

Optical Solitons 
The Solitons intensity and width qualifies them to be considered 

as Delta function. 

We shall model the propagation of the Soliton in the air by the 

Nonlinear Schrödinger equation with the nonlinearity, and 

dispersion removed, forced by the Delta function. 

( , ) ( , ) ( ) ( )ct xG x t G x t x tδ δ∂ + ∂ =  

 

7.1  Let  be hyper-real in x , and in t , and have Principal 

Value Derivatives with respect to  x , and t , that satisfy the wave 

equation 

( , )G x t

1
( , ) ( , ) ( ) ( )t xG x t G x t x t

c
δ δ∂ + ∂ = , 

with  
( , 0) 0G x = , 

Then,                               

( , ) ( )G x t c ct xδ= −  

Proof: 

In the following, all functions are Hyper-Real. 
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The Laplace Transform of  the hyper-real  exists with 

respect to t : 

( , )G x t

{ }
0

( , ) ( , ) ( , )
t

st

t

G x t e G x t dt g x s
=∞

−

=

= ≡∫L  

{ }
0

( , ) ( , )
t

st
t t

t

G x t e G x t dt
=∞

−

=

∂ = ∂∫L  

                     { }
0

0

( , ) ( , )
t

tst st
tt

t

e G x t e G x t dt
=∞

=∞− −
=

=

= − ∂∫  

                      
00

( , 0) ( , )
t

st

t

G x s e G x t dt
=∞

−

==

= − + ∫

                     , ( , )sg x s=

{ }( ) 1tδ =L , 

Thus,  the hyper-real equation 1
( , ) ( , ) ( ) ( )t xG x t G x t x t

c
δ δ∂ + ∂ = , 

Laplace Transforms into 

1
( , ) ( , ) ( )xsg x s g x s x

c
δ+ ∂ = . 

The Fourier Transform of   with respect to  is   ( , )g x s x

{ }( , ) ( , ) ( , )
x

i x

x

g x s e g x s dx g sω ω
=∞

−

=−∞

= ≡∫F  

The Inverse Fourier Transform is 
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1
( , ) ( , )

2
i xg x s e g s d

ν
ω

ν

ω ω
π

=∞

=−∞

= ∫  

Hence, 

{ }1
( , ) ( , )

2
i x

x xg x s e g s d
ν

ω

ν

ω ω
π

=∞

=−∞

∂ = ∂∫  

                                       1
( , )

2
i xe i g s d

ν
ω

ν

ω ω ω
π

=∞

=−∞

= ∫ , 

Therefore, the Fourier Transform of   with respect to  is ( , )xg x s∂ x

{ }( , ) ( , )xg x s i g sω ω∂ =F . 

Since ,  the equation { }( ) 1xδ =F 1
( , ) ( , ) ( )xsg x s g x s x

c
δ+ ∂ = , 

Fourier Transforms into 

1
( , ) ( , ) 1sg s i g s

c
ω ω ω+ = . 

Therefore,  

( , )
c

g s
s i

ω
ω

=
+ c

. 

By the Laplace Integral Theorem, The hyper-real  may be 

Inverse Laplace Transformed into a hyper-real function : 

( , )g sω

ˆ( , )G tω

1ˆ( , )
c

G t
s i c

ω
ω

− ⎧ ⎫⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪+⎪ ⎪⎩ ⎭
L , 

From Laplace Transform Tables, 

                                                   i ctce ω−=
Hence, 
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ˆ( , ) i ctG t ce ωω −= . 

By the Fourier Integral Theorem, The hyper-real  may be 

Inverse Fourier Transformed into the hyper-real function : 

ˆ( , )G tω

( , )G x t

( , ) ( )G x t c x ctδ= −  

                                                    ( )c ct xδ= −

                                                   ( )
x

t
c

δ= − . 
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