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Abstract  The Jordan Lemma is needed in the evaluation of 

infinite real integrals. We observe that Jordan’s proof, and 

Whittaker and Watson proof are both incomplete, if not flawed. 

Since all textbooks follow these proofs, we supply the complete 

proof. 
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Introduction 
To evaluate the infinite integral 
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Therefore, by the Residue Theorem, 
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It follows that this is the value of the desired integral. 

The vanishing of the integral on the infinite semi-circle, holds 

under the conditions of a general result attributed by Whittaker 

and Watson, to Jordan. 

 
If ( )f z  is an analytic function in the upper-half complex plane, 

so that ( ) 0f z  , uniformly on any upper semi-circle C  with 

radius    , centered at the origin, 

Then,   for 0m  ,    ( ) 0imz

C

e f z dz


 ,  as     . 

We show here that the proof of the Lemma by Jordan, and the 

proof by Whittaker and Watson are incomplete, if not flawed.   

Whittaker and Watson proof permeates many if not all textbooks 

on complex variables, and has to be corrected. 
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1.  

Jordan’s Proof 
In Jordan’s proof,  1m  . 

On the semi-circle,  C  

iz e  ,  0    . 
We have 

( ) ( )iz iz

C C

e f z dz e f z dz
 

  . 

Substituting 
cos sin siniz ie e e        , 

idz e d  , 

dz d  , 

sin
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Since 
max ( ) 0
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 , as    , 

we need to show that sin
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e d
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  is bounded. 

Jordan writes with no further explanation 
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2
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Changing the integration variable in the first integral into 

2
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we have 
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We know not how to confirm this inequality, or perhaps guess.  
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2.   

Whittaker and Watson Proof   
Where Jordan saw an inequality, Whittaker and Watson saw an 

equality.  They wrote with no further explanation 
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We know not how to confirm this equality, or perhaps guess. 

Whittaker and Watson Proof is at best incomplete. 
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3.   

Completed Proof  

  

To complete the Jordan Lemma Proof, we need to bound 

2
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endpoints is under the graph of cos .  That is, 
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2cos 1y 
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Similarly, [Whittaker and Watson],  
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is bounded by  
m


.  
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